26 research outputs found

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Water contaminated with Didymosphenia geminata generates changes in Salmo salar spermatozoa activation times

    No full text
    Didimosphenia geminata ('didymo'), has become a powerful and devastating river plague in Chile. A system was developed in D. geminata channels with the purpose evaluating the effects of water polluted with didymo on the activation of Atlantic salmon (Salmo salar) spermatozoa. Results indicate that semen, when activated with uncontaminated river water had an average time of 60 +/- 21 s. When using Powermilt, (a commercial activator), times of 240 +/- 21 s are achieved, while rivers contaminated with D. geminata achieve a motility time of 30 +/- 12s. Interestingly enough, the kinetic parameters of VSL, VCL and VAP showed no significant changes under all of the conditions. Furthermore, the presence of D. geminata reduces activation time of the samples as the cells age, indicating increased effects in spermatozoa that are conserved for more than 5 days. D. geminata has antioxidant content, represented by polyphenols; 200 ppm of polyphenol were obtained in this study per log of microalgae. Spermatozoa exposed to these extracts showed a reduction in mobility time in a dose dependent manner, showing an IC50 of 15 ppm. The results suggest an effect on spermatozoa activation, possibly due to the release of polyphenols present in contaminated rivers, facilitating the alteration of sperm motility times, without affecting the viability or kinetics of the cells. These findings have important implications for current policy regarding the control of the algae. Current control measures focus on the number of visible species, and not on the compounds that they release, which this study shows, also have a problematic effect on salmon production. (C) 2015 Elsevier B.V. All rights reserved

    Hydraulic differences along the water transport system of South American Nothofagus species: Do leaves protect the stem functionality?

    Get PDF
    Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess if leaves are more vulnerable to cavitation than stems, consistent with the theory of hydraulic segmentation along the vascular system of trees in ecosystems subject to seasonal drought. Vulnerability to cavitation, hydraulic conductivity of stems and leaves, leaf water potential, wood density and leaf water relations were examined. Large variations in vulnerability to cavitation of stems and leaves were observed across populations and species, but leaves were consistently more vulnerable than stems. Water potential at 50 loss of maximum hydraulic efficiency (P50) ranged from-0.94 to-2.44MPa in leaves and from-2.6 to-5.3MPa in stems across species and populations. Populations in the driest sites had sapwood and leaves more vulnerable to cavitation than those grown in the wettest sites. Stronger diurnal down-regulation in leaf hydraulic conductance compared with stem hydraulic conductivity apparently has the function to slow down potential water loss in stems and protect stem hydraulics from cavitation. Species-specific differences in wood density and leaf hydraulic conductance (KLeaf) were observed. Both traits were functionally related: species with higher wood density had lower KLeaf. Other stem and leaf hydraulic traits were functionally coordinated, resulting in Nothofagus species with an efficient delivery of water to the leaves. The integrity of the more expensive woody portion of the water transport pathway can thus be maintained at the expense of the replaceable portion (leaves) of the stem-leaf continuum under prolonged drought. Compensatory adjustments between hydraulic traits may help to decrease the rate of embolism formation in the trees more vulnerable to cavitation. © 2012 The Author.Fil: Bucci, Sandra Janet. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia; ArgentinaFil: Scholz, Fabian Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia; ArgentinaFil: Campanello, Paula Inés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Montti, Lia Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; ArgentinaFil: Jimenez Castillo, Mylthon. Universidad Austral de Chile; ChileFil: Rockwell, Fulton A.. Harvard University; Estados UnidosFil: la Manna, Ludmila Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia "san Juan Bosco". Facultad de Ingeniería - Sede Esquel. Departamento de Ingeniería Forestal; Argentina. Provincia del Chubut. Centro de Investigación y Extensión Forestal Andino Patagónico; ArgentinaFil: Guerra, Pedro. Universidad Nacional de la Patagonia "san Juan Bosco". Facultad de Ingeniería - Sede Esquel. Departamento de Ingeniería Forestal; ArgentinaFil: Lopez Bernal, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia "san Juan Bosco". Facultad de Ingeniería - Sede Esquel. Departamento de Ingeniería Forestal; Argentina. Provincia del Chubut. Centro de Investigación y Extensión Forestal Andino Patagónico; ArgentinaFil: Troncoso, Oscar Alberto. Universidad Nacional de la Patagonia "san Juan Bosco". Facultad de Ingeniería - Sede Esquel. Departamento de Ingeniería Forestal; ArgentinaFil: Enricci, Juan. Universidad Nacional de la Patagonia "san Juan Bosco". Facultad de Ingeniería - Sede Esquel. Departamento de Ingeniería Forestal; ArgentinaFil: Holbrook, Michele N.. Harvard University; Estados UnidosFil: Goldstein, Guillermo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. University of Miami; Estados Unido

    Aulas develadas.2 : la práctica, con investigación, se cambia

    No full text
    El lector tiene en sus manos el segundo libro de la colección "Aulas develadas: la práctica, con investigación, se cambia", producto de las investigaciones de aula adelantadas por docentes de la Universidad del Norte, con el apoyo del Centro para la Excelencia Docente (CEDU), en el programa Laboratorios Pedagógicos. Ese libro recopila los resultados de las investigaciones en el programa laboratorios pedagógicos del CEDU; estudiantes de educación, docentes de instituciones públicas y privadas y lectores interesados en el tema encontrarán aquí propuestas pedagógicas innovadoras en las áreas de ingeniería, salud pública, derecho, matemáticas y diseño industrial, entre otras

    ¿El armario está abierto?: estudios sobre diversidad sexual en El Salvador

    No full text
    El presente texto tiene por objetivo analizar 39 producciones universitarias sobre diferentes temáticas de diversidad sexual producidas entre 1988 a 2015, las cuales se organizan en 4 ejes/binomios: Prácticas sexuales/Cuerpos, Matrimonio/Familias, Identidades/Prejuicios y Derechos/Ciudadanías. Al mismo tiempo se proponen nuevas temáticas para investigar y se reflexiona sobre los retos al interior de la educación superior salvadoreña para constituir un campo de Estudios sobre Diversidad Sexual. Concluyendo, a pesar de la existencia dispersa de 39 producciones universitarias, las cuales son un avance, el armario de la academia salvadoreña está aún cerrado, y por tal motivo surge la pregunta ¿cómo lo podemos abrir

    A network of macrophages supports mitochondrial homeostasis in the heart

    Get PDF
    Cardiomyocytes are subjected to the intense mechanical stress and metabolic demands of the beating heart. It is unclear whether these cells, which are long-lived and rarely renew, manage to preserve homeostasis on their own. While analyzing macrophages lodged within the healthy myocardium, we discovered that they actively took up material, including mitochondria, derived from cardiomyocytes. Cardiomyocytes ejected dysfunctional mitochondria and other cargo in dedicated membranous particles reminiscent of neural exophers, through a process driven by the cardiomyocyte’s autophagy machinery that was enhanced during cardiac stress. Depletion of cardiac macrophages or deficiency in the phagocytic receptor Mertk resulted in defective elimination of mitochondria from the myocardial tissue, activation of the inflammasome, impaired autophagy, accumulation of anomalous mitochondria in cardiomyocytes, metabolic alterations, and ventricular dysfunction. Thus, we identify an immune-parenchymal pair in the murine heart that enables transfer of unfit material to preserve metabolic stability and organ function

    A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart

    No full text
    Cardiomyocytes are subjected to the intense mechanical stress and metabolic demands of the beating heart. It is unclear whether these cells, which are long-lived and rarely renew, manage to preserve homeostasis on their own. While analyzing macrophages lodged within the healthy myocardium, we discovered that they actively took up material, including mitochondria, derived from cardiomyocytes. Cardiomyocytes ejected dysfunctional mitochondria and other cargo in dedicated membranous particles reminiscent of neural exophers, through a process driven by the cardiomyocyte's autophagy machinery that was enhanced during cardiac stress. Depletion of cardiac macrophages or deficiency in the phagocytic receptor Mertk resulted in defective elimination of mitochondria from the myocardial tissue, activation of the inflammasome, impaired autophagy, accumulation of anomalous mitochondria in cardiomyocytes, metabolic alterations, and ventricular dysfunction. Thus, we identify an immune-parenchymal pair in the murine heart that enables transfer of unfit material to preserve metabolic stability and organ function. Video Abstract: [Figure presented] A system of macrophages in the heart supports cardiomyocyte health by phagocytosing exopher particles ejected from cardiomyocytes that contain defective mitochondria, among other cellular contents.This study was supported by Intramural grants from the Severo Ochoa program (IGP-SO); grants SAF2015-71878-REDT and SAF2014-56819-R from the Ministerio de Ciencia e Innovacion (MICINN) to A.C.; European Research Council grant EU-rhythmy (ERC-ADG-2014-ID:669387) to S.G.P., and MATRIX (ERC-COG-2018-ID: 819775) to B.I.; L.G.N. is supported by SIgN core funding from A∗STAR; grant BFU2016-75144-R from the Ministry of Science and Innovation to J.A.B,; grants PGC2018-096486-B-I00 and RD16/0011/0019 (ISCIII) from MICINN, TNE-17CVD04 from the Leducq Foundation, and S2017/BMD-3875 from the Comunidad de Madrid to M.T; intramural grant TPC/O-SO and grants SAF2015-65633-R, RTI2018-099357-B-I00, and HFSP (RGP0016/2018) to J.A.E.; intramural grant IGP-SO to J.A.-C. and A.H.; BIO2017-83640-P and RYC-2014-16604 to J.A-C; grants PRB3 (IPT17/0019-ISCIII-SGEFI/ERDF, ProteoRed) from the Carlos III Institute of Health and Fondo de Investigaciones Sanitarias, BIO2015-67580-P and PGC2018-097019-B-I00 from MICINN to J.V.; RTI2018-096068 from MICINN, AFM, MDA, LaCaixa-HR17-00040, UPGRADE-H2020-825825, and European Research Council (ERC-741538) to P.M.C.; S2017/BMD-3867 RENIM-CM from the Comunidad de Madrid and cofunded with European structural and investment funds to M.D.; 120/C/2015-20153032 from Fundació la Marató de TV3, SAF2015-65607-R and RTI2018-095497-B-I00 from MICINN, HR17_00527 from La Caixa Foundation, and TNE-18CVD04 from the Leducq Foundation to A.H.; C.V.R. is a Howard Hughes Medical Institute Faculty Scholar; J.A.N-A is supported by fellowship SVP-2014-068595, A.V.L.-V. by SVP-2013-068089, L.E.-M. by FJCI-2016-29384, and A.R.-P. by BES-2016-076635, all from MICINN; and the CNIC International Postdoctoral Program (EU grant agreement 600396 to D.J.S.). The CNIC is supported by the MICINN and the Pro-CNIC Foundation and is a Severo Ochoa Center of Excellence (MICINN award SEV-2015-0505)
    corecore