274 research outputs found

    Host-microbe interaction in the gastrointestinal tract

    Get PDF
    The gastrointestinal tract is a highly complex organ in which multiple dynamic physiological processes are tightly coordinated while interacting with a dense and extremely diverse microbial population. From establishment in early life, through to host-microbe symbiosis in adulthood, the gut microbiota plays a vital role in our development and health. The effect of the microbiota on gut development and physiology is highlighted by anatomical and functional changes in germ-free mice, affecting the gut epithelium, immune system, and enteric nervous system. Microbial colonisation promotes competent innate and acquired mucosal immune systems, epithelial renewal, barrier integrity, and mucosal vascularisation and innervation. Interacting or shared signalling pathways across different physiological systems of the gut could explain how all these changes are coordinated during postnatal colonisation, or after the introduction of microbiota into germ-free models. The application of cell-based in vitro experimental systems and mathematical modelling can shed light on the molecular and signalling pathways which regulate the development and maintenance of homeostasis in the gut and beyond. This article is protected by copyright. All rights reserved

    Designing Peptide/Graphene Hybrid Hydrogels through Fine-Tuning of Molecular Interactions

    Get PDF
    A recent strategy that has emerged for the design of increasingly functional hydrogels is the incorporation of nanofillers in order to exploit their specific properties to either modify the performance of the hydrogel or add functionality. The emergence of carbon nanomaterials in particular has provided great opportunity for the use of graphene derivatives (GDs) in biomedical applications. The key challenge when designing hybrid materials is the understanding of the molecular interactions between the matrix (peptide nanofibers) and the nanofiller (here GDs) and how these affect the final properties of the bulk material. For the purpose of this work, three gelling ÎČ-sheet-forming, self-assembling peptides with varying physiochemical properties and five GDs with varying surface chemistries were chosen to formulate novel hybrid hydrogels. First the peptide hydrogels and the GDs were characterized; subsequently, the molecular interaction between peptides nanofibers and GDs were probed before formulating and mechanically characterizing the hybrid hydrogels. We show how the interplay between electrostatic interactions, which can be attractive or repulsive, and hydrophobic (and π–π in the case of peptide containing phenylalanine) interactions, which are always attractive, play a key role on the final properties of the hybrid hydrogels. The shear modulus of the hydrid hydrogels is shown to be related to the strength of fiber adhesion to the flakes, the overall hydrophobicity of the peptides, as well as the type of fibrillar network formed. Finally, the cytotoxicity of the hybrid hydrogel formed at pH 6 was also investigated by encapsulating and culturing human mesemchymal stem cells (hMSC) over 14 days. This work clearly shows how interactions between peptides and GDs can be used to tailor the mechanical properties of the resulting hydrogels, allowing the incorporation of GD nanofillers in a controlled way and opening the possibility to exploit their intrinsic properties to design novel hybrid peptide hydrogels for biomedical applications

    Representation of dissolved organic carbon in the JULES land surface model (vn4.4_JULES-DOCM)

    Get PDF
    Current global models of the carbon (C) cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, thus not considering the lateral transport of carbon from the continents to the oceans. Therefore, those models implicitly consider all of the C which is not respired to the atmosphere to be stored on land and hence overestimate the land C sink capability. A model that represents the whole continuum from atmosphere to land and into the ocean would provide a better understanding of the Earth's C cycle and hence more reliable historical or future projections. A first and critical step in that direction is to include processes representing the production and export of dissolved organic carbon in soils. Here we present an original representation of dissolved organic C (DOC) processes in the Joint UK Land Environment Simulator (JULES-DOCM) that integrates a representation of DOC production in terrestrial ecosystems based on the incomplete decomposition of organic matter, DOC decomposition within the soil column, and DOC export to the river network via leaching. The model performance is evaluated in five specific sites for which observations of soil DOC concentration are available. Results show that the model is able to reproduce the DOC concentration and controlling processes, including leaching to the riverine system, which is fundamental for integrating terrestrial and aquatic ecosystems. Future work should include the fate of exported DOC in the river system as well as DIC and POC export from soil

    ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales

    Get PDF
    Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5 degrees grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (V-cmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r(2) = 0.76; Nash-Sutcliffe modeling efficiency, MEF = 0.76) and ecosystem respiration (ER, r(2) = 0.78, MEF = 0.75), with lesser accuracy for latent heat fluxes (LE, r(2) = 0.42, MEF = 0.14) and and net ecosystem CO2 exchange (NEE, r(2) = 0.38, MEF = 0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r(2) values (0.57-0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r(2) values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r(2) <0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized V-cmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average V-cmax value.Peer reviewe

    Mouse Cognition-Related Behavior in the Open-Field: Emergence of Places of Attraction

    Get PDF
    Spatial memory is often studied in the Morris Water Maze, where the animal's spatial orientation has been shown to be mainly shaped by distal visual cues. Cognition-related behavior has also been described along “well-trodden paths”—spatial habits established by animals in the wild and in captivity reflecting a form of spatial memory. In the present study we combine the study of Open Field behavior with the study of behavior on well-trodden paths, revealing a form of locational memory that appears to correlate with spatial memory. The tracked path of the mouse is used to examine the dynamics of visiting behavior to locations. A visit is defined as either progressing through a location or stopping there, where progressing and stopping are computationally defined. We then estimate the probability of stopping at a location as a function of the number of previous visits to that location, i.e., we measure the effect of visiting history to a location on stopping in it. This can be regarded as an estimate of the familiarity of the mouse with locations. The recently wild-derived inbred strain CZECHII shows the highest effect of visiting history on stopping, C57 inbred mice show a lower effect, and DBA mice show no effect. We employ a rarely used, bottom-to-top computational approach, starting from simple kinematics of movement and gradually building our way up until we end with (emergent) locational memory. The effect of visiting history to a location on stopping in it can be regarded as an estimate of the familiarity of the mouse with locations, implying memory of these locations. We show that the magnitude of this estimate is strain-specific, implying a genetic influence. The dynamics of this process reveal that locations along the mouse's trodden path gradually become places of attraction, where the mouse stops habitually

    Differential Expression of Non-Coding RNAs and Continuous Evolution of the X Chromosome in Testicular Transcriptome of Two Mouse Species

    Get PDF
    BACKGROUND: Tight regulation of testicular gene expression is a prerequisite for male reproductive success, while differentiation of gene activity in spermatogenesis is important during speciation. Thus, comparison of testicular transcriptomes between closely related species can reveal unique regulatory patterns and shed light on evolutionary constraints separating the species. METHODOLOGY/PRINCIPAL FINDINGS: Here, we compared testicular transcriptomes of two closely related mouse species, Mus musculus and Mus spretus, which diverged more than one million years ago. We analyzed testicular expression using tiling arrays overlapping Chromosomes 2, X, Y and mitochondrial genome. An excess of differentially regulated non-coding RNAs was found on Chromosome 2 including the intronic antisense RNAs, intergenic RNAs and premature forms of Piwi-interacting RNAs (piRNAs). Moreover, striking difference was found in the expression of X-linked G6pdx gene, the parental gene of the autosomal retrogene G6pd2. CONCLUSIONS/SIGNIFICANCE: The prevalence of non-coding RNAs among differentially expressed transcripts indicates their role in species-specific regulation of spermatogenesis. The postmeiotic expression of G6pdx in Mus spretus points towards the continuous evolution of X-chromosome silencing and provides an example of expression change accompanying the out-of-the X-chromosomal retroposition

    Evolution of major milk proteins in Mus musculus and Mus spretus mouse species: a genoproteomic analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to their high level of genotypic and phenotypic variability, <it>Mus spretus </it>strains were introduced in laboratories to investigate the genetic determinism of complex phenotypes including quantitative trait loci. <it>Mus spretus </it>diverged from <it>Mus musculus </it>around 2.5 million years ago and exhibits on average a single nucleotide polymorphism (SNP) in every 100 base pairs when compared with any of the classical laboratory strains. A genoproteomic approach was used to assess polymorphism of the major milk proteins between SEG/Pas and C57BL/6J, two inbred strains of mice representative of <it>Mus spretus </it>and <it>Mus musculus </it>species, respectively.</p> <p>Results</p> <p>The milk protein concentration was dramatically reduced in the SEG/Pas strain by comparison with the C57BL/6J strain (34 ± 9 g/L <it>vs</it>. 125 ± 12 g/L, respectively). Nine major proteins were identified in both milks using RP-HPLC, bi-dimensional electrophoresis and MALDI-Tof mass spectrometry. Two caseins (ÎČ and α<sub>s1</sub>) and the whey acidic protein (WAP), showed distinct chromatographic and electrophoresis behaviours. These differences were partly explained by the occurrence of amino acid substitutions and splicing variants revealed by cDNA sequencing. A total of 34 SNPs were identified in the coding and 3'untranslated regions of the SEG/Pas <it>Csn1s1 </it>(11), <it>Csn2 </it>(7) and <it>Wap </it>(8) genes. In addition, a 3 nucleotide deletion leading to the loss of a serine residue at position 93 was found in the SEG/Pas <it>Wap </it>gene.</p> <p>Conclusion</p> <p>SNP frequencies found in three milk protein-encoding genes between <it>Mus spretus </it>and <it>Mus musculus </it>is twice the values previously reported at the whole genome level. However, the protein structure and post-translational modifications seem not to be affected by SNPs characterized in our study. Splicing mechanisms (cryptic splice site usage, exon skipping, error-prone junction sequence), already identified in casein genes from other species, likely explain the existence of multiple α<sub>s1</sub>-casein isoforms both in SEG/Pas and C57BL/6J strains. Finally, we propose a possible mechanism by which the hallmark tandem duplication of a 18-nt exon (14 copies) may have occurred in the mouse genome.</p

    The toughness of epoxy-poly(butylene terephthalate) blends

    Full text link
    Blends containing 5% poly(butylene terephthalate) (PBT) in an anhydride-cured epoxy with three different PBT morphologies were studied. The three morphologies were a dispersion of spherulites, a structureless gel and a gel with spherulites. The average fracture toughnesses, K Ic , and fracture energies, G Ic , for those morphologies were 0.83, 2.3 and 1.8 MPa m 1/2 and 240, 2000 and 1150 J m −2 , respectively. These values should be compared with the values of 0.72 MPa m 1/2 and 180 J m −2 , respectively, for the cured epoxy without PBT. The elastic moduli and yield strengths in compression for all three blend morphologies remained essentially unchanged from those of the cured epoxy without PBT, namely, 2.9 GPa for the modulus and 115 MPa for the yield strength. The fracture surfaces of the cured spherulitic dispersion blends indicate the absorption of fracture energy by crack bifurcation induced by the spherulites. The fracture surfaces of the cured structureless gel blends indicate that fracture energy was absorbed by matrix and PBT plastic deformation and by spontaneous crack bifurcation. But phase transformation of the PBT and anelastic strain of the matrix below the fracture surfaces may account for most of the large fracture energy of the cured structureless gel blends.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44733/1/10853_2004_Article_BF00366876.pd

    Unexpected removal of the most neutral cationic pharmaceutical in river waters

    Get PDF
    Contamination of surface waters by pharmaceuticals is now widespread. There are few data on their environmental behaviour, particularly for those which are cationic at typical surface water pH. As the external surfaces of bacterio-plankton cells are hydrophilic with a net negative charge, it was anticipated that bacterio-plankton in surface-waters would preferentially remove the most extensively-ionised cation at a given pH. To test this hypothesis, the persistence of four, widely-used, cationic pharmaceuticals, chloroquine, quinine, fluphenazine and levamisole, was assessed in batch microcosms, comprising water and bacterio-plankton, to which pharmaceuticals were added and incubated for 21 days. Results show that levamisole concentrations decreased by 19 % in microcosms containing bacterio-plankton, and by 13 % in a parallel microcosm containing tripeptide as a priming agent. In contrast to levamisole, concentrations of quinine, chloroquine and fluphenazine were unchanged over 21 days in microcosms containing bacterio-plankton. At the river-water pH, levamisole is 28 % cationic, while quinine is 91–98 % cationic, chloroquine 99 % cationic and fluphenazine 72–86 % cationic. Thus, the most neutral compound, levamisole, showed greatest removal, contradicting the expected bacterio-plankton preference for ionised molecules. However, levamisole was the most hydrophilic molecule, based on its octanol–water solubility coefficient (K ow). Overall, the pattern of pharmaceutical behaviour within the incubations did not reflect the relative hydrophilicity of the pharmaceuticals predicted by the octanol–water distribution coefficient, D ow, suggesting that improved predictive power, with respect to modelling bioaccumulation, may be needed to develop robust environmental risk assessments for cationic pharmaceuticals

    Anthropogenic perturbation of the carbon fluxes from land to ocean

    Full text link
    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr-1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (~0.4 Pg C yr-1) or sequestered in sediments (~0.5 Pg C yr-1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ~0.1 Pg C yr-1 to the open ocean. According to our analysis, terrestrial ecosystems store ~0.9 Pg C yr-1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr-1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land–ocean aquatic continuum need to be included in global carbon dioxide budgets.Peer reviewe
    • 

    corecore