9 research outputs found

    Approaches to reduce zinc and iron deficits in food systems

    Get PDF
    There is a deficit of mineral micronutrients in global food systems, known as ‘hidden hunger’, especially in the global south. This review focuses on zinc (Zn) and iron (Fe), whose entry into food systems depends primarily on soil and crop factors. Approaches to increase dietary supplies of Zn and Fe include: (1) supplementation, (2) food fortification, (3) dietary diversification, and (4) crop biofortification, including breeding and fertilizer-based approaches. Supply-based estimates indicate that Zn deficiency might be more widespread than Fe deficiency in sub-Saharan Africa, although there are major knowledge gaps at an individual biomarker level. Recent analytical advances, including the use of stable isotopes of Zn and Fe, can play an increasing role in improving our understanding of the movement of micronutrients in food systems, and thereby help to reduce the immense human cost of ‘hidden hunger’

    Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms

    No full text
    THE fractionation of stable copper (Cu) isotopes during uptake into plant roots and translocation to shoots can provide information on Cu acquisition mechanisms. ISOTOPE fractionation (65Cu/63Cu) and intact tissue speciation techniques (X-ray absorption spectroscopy, XAS) were used to examine the uptake, translocation and speciation of Cu in strategy I (tomato–Solanum lycopersicum) and strategy II (oat–Avena sativa) plant species. Plants were grown in controlled solution cultures, under varied iron (Fe) conditions, to test whether the stimulation of Fe-acquiring mechanisms can affect Cu uptake in plants. ISOTOPICALLY light Cu was preferentially incorporated into tomatoes (Δ65Cuwhole plant-solution = c. −1‰), whereas oats showed minimal isotopic fractionation, with no effect of Fe supply in either species. The heavier isotope was preferentially translocated to shoots in tomato, whereas oat plants showed no significant fractionation during translocation. The majority of Cu in the roots and leaves of both species existed as sulfur-coordinated Cu(I) species resembling glutathione/cysteine-rich proteins. THE presence of isotopically light Cu in tomatoes is attributed to a reductive uptake mechanism, and the isotopic shifts within various tissues are attributed to redox cycling during translocation. The lack of isotopic discrimination in oat plants suggests that Cu uptake and translocation are not redox selective.Brooke M. Ryan, Jason K. Kirby, Fien Degryse, Hugh Harris, Mike J. McLaughlin and Kathleen Scheideric

    Metal species involved in long distance metal transport in plants

    No full text

    Zinc Homeostasis and isotopic fractionation in plants: a review

    No full text
    corecore