93 research outputs found

    Lack of guidelines and translational knowledge is hindering the implementation of psychiatric genetic counseling and testing within Europe - A multi-professional survey study

    Get PDF
    Genetic research has identified a large number of genetic variants, both rare and common, underlying neurodevelopmental disorders (NDD) and major psychiatric disorders. Currently, these findings are being translated into clinical practice. However, there is a lack of knowledge and guidelines for psychiatric genetic testing (PsychGT) and genetic counseling (PsychGC). The European Union-funded COST action EnGagE (CA17130) network was started to investigate the current implementation status of PsychGT and PsychGC across 35 participating European countries. Here, we present the results of a pan-European online survey in which we gathered the opinions, knowledge, and practices of a self-selected sample of professionals involved/interested in the field. We received answers from 181 respondents. The three main occupational categories were genetic counselor (21.0%), clinical geneticist (24.9%), and researcher (25.4%). Of all 181 respondents, 106 provide GC for any psychiatric disorder or NDD, corresponding to 58.6% of the whole group ranging from 43.2% in Central Eastern Europe to 66.1% in Western Europe. Overall, 65.2% of the respondents reported that genetic testing is offered to individuals with NDD, and 26.5% indicated the same for individuals with major psychiatric disorders. Only 22.1% of the respondents indicated that they have guidelines for PsychGT. Pharmacogenetic testing actionable for psychiatric disorders was offered by 15%. Interestingly, when genetic tests are fully covered by national health insurance, more genetic testing is provided for individuals with NDD but not those with major psychiatric disorders. Our qualitative analyses of responses highlight the lack of guidelines and knowledge on utilizing and using genetic tests and education and training as the major obstacles to implementation. Indeed, the existence of psychiatric genetic training courses was confirmed by only 11.6% of respondents. The question on the relevance of up-to-date education and training in psychiatric genetics on everyday related practice was highly relevant. We provide evidence that PsychGC and PsychGT are already in use across European countries, but there is a lack of guidelines and education. Harmonization of practice and development of guidelines for genetic counseling, testing, and training professionals would improve equality and access to quality care for individuals with psychiatric disorders within Europe

    Characterisation of age and polarity at onset in bipolar disorder

    Get PDF
    Background Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools. Aims To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics. Method Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts. Results Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO. Conclusions AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.publishedVersio

    Common variants at 2q11.2, 8q21.3, and 11q13.2 are associated with major mood disorders

    Get PDF
    Bipolar disorder (BPD) and major depressive disorder (MDD) are primary major mood disorders. Recent studies suggest that they share certain psychopathological features and common risk genes, but unraveling the full genetic architecture underlying the risk of major mood disorders remains an important scientific task. The public genome-wide association study (GWAS) data sets offer the opportunity to examine this topic by utilizing large amounts of combined genetic data, which should ultimately allow a better understanding of the onset and development of these illnesses. Genome-wide meta-analysis was performed by combining two GWAS data sets on BPD and MDD (19,637 cases and 18,083 controls), followed by replication analyses for the loci of interest in independent 12,364 cases and 76,633 controls from additional samples that were not included in the two GWAS data sets. The single-nucleotide polymorphism (SNP) rs10791889 at 11q13.2 was significant in both discovery and replication samples. When combining all samples, this SNP and multiple other SNPs at 2q11.2 (rs717454), 8q21.3 (rs10103191), and 11q13.2 (rs2167457) exhibited genome-wide significant association with major mood disorders. The SNPs in 2q11.2 and 8q21.3 were novel risk SNPs that were not previously reported, and SNPs at 11q13.2 were in high LD with potential BPD risk SNPs implicated in a previous GWAS. The genome-wide significant loci at 2q11.2 and 11q13.2 exhibited strong effects on the mRNA expression of certain nearby genes in cerebellum. In conclusion, we have identified several novel loci associated with major mood disorders, adding further support for shared genetic risk between BPD and MDD. Our study highlights the necessity and importance of mining public data sets to explore risk genes for complex diseases such as mood disorders

    Prediction of lithium response using genomic data

    Get PDF
    Predicting lithium response prior to treatment could both expedite therapy and avoid exposure to side effects. Since lithium responsiveness may be heritable, its predictability based on genomic data is of interest. We thus evaluate the degree to which lithium response can be predicted with a machine learning (ML) approach using genomic data. Using the largest existing genomic dataset in the lithium response literature (n = 2210 across 14 international sites; 29% responders), we evaluated the degree to which lithium response could be predicted based on 47,465 genotyped single nucleotide polymorphisms using a supervised ML approach. Under appropriate cross-validation procedures, lithium response could be predicted to above-chance levels in two constituent sites (Halifax, Cohen's kappa 0.15, 95% confidence interval, CI [0.07, 0.24]; and Würzburg, kappa 0.2 [0.1, 0.3]). Variants with shared importance in these models showed over-representation of postsynaptic membrane related genes. Lithium response was not predictable in the pooled dataset (kappa 0.02 [- 0.01, 0.04]), although non-trivial performance was achieved within a restricted dataset including only those patients followed prospectively (kappa 0.09 [0.04, 0.14]). Genomic classification of lithium response remains a promising but difficult task. Classification performance could potentially be improved by further harmonization of data collection procedures

    Common variants at 2q11.2, 8q21.3, and 11q13.2 are associated with major mood disorders

    Get PDF
    Bipolar disorder (BPD) and major depressive disorder (MDD) are primary major mood disorders. Recent studies suggest that they share certain psychopathological features and common risk genes, but unraveling the full genetic architecture underlying the risk of major mood disorders remains an important scientific task. The public genome-wide association study (GWAS) data sets offer the opportunity to examine this topic by utilizing large amounts of combined genetic data, which should ultimately allow a better understanding of the onset and development of these illnesses. Genome-wide meta-analysis was performed by combining two GWAS data sets on BPD and MDD (19,637 cases and 18,083 controls), followed by replication analyses for the loci of interest in independent 12,364 cases and 76,633 controls from additional samples that were not included in the two GWAS data sets. The single-nucleotide polymorphism (SNP) rs10791889 at 11q13.2 was significant in both discovery and replication samples. When combining all samples, this SNP and multiple other SNPs at 2q11.2 (rs717454), 8q21.3 (rs10103191), and 11q13.2 (rs2167457) exhibited genome-wide significant association with major mood disorders. The SNPs in 2q11.2 and 8q21.3 were novel risk SNPs that were not previously reported, and SNPs at 11q13.2 were in high LD with potential BPD risk SNPs implicated in a previous GWAS. The genome-wide significant loci at 2q11.2 and 11q13.2 exhibited strong effects on the mRNA expression of certain nearby genes in cerebellum. In conclusion, we have identified several novel loci associated with major mood disorders, adding further support for shared genetic risk between BPD and MDD. Our study highlights the necessity and importance of mining public data sets to explore risk genes for complex diseases such as mood disorders

    Gene set enrichment analysis and expression pattern exploration implicate an involvement of neurodevelopmental processes in bipolar disorder

    Get PDF
    Background Bipolar disorder (BD) is a common and highly heritable disorder of mood. Genome-wide association studies (GWAS) have identified several independent susceptibility loci. In order to extract more biological information from GWAS data, multi-locus approaches represent powerful tools since they utilize knowledge about biological processes to integrate functional sets of genes at strongly to moderately associated loci. Methods We conducted gene set enrichment analyses (GSEA) using 2.3 million single-nucleotide polymorphisms, 397 Reactome pathways and 24,025 patients with BD and controls. RNA expression of implicated individual genes and gene sets were examined in post-mortem brains across lifespan. Results Two pathways showed a significant enrichment after correction for multiple comparisons in the GSEA: GRB2 events in ERBB2 signaling, for which 6 of 21 genes were BD associated (P = 0.0377), and NCAM signaling for neurite out-growth, for which 11 out of 62 genes were BD associated (P = 0.0451). Most pathway genes showed peaks of RNA co-expression during fetal development and infancy and mapped to neocortical areas and parts of the limbic system. Limitations Pathway associations were technically reproduced by two methods, although they were not formally replicated in independent samples. Gene expression was explored in controls but not in patients. Conclusions Pathway analysis in large GWAS data of BD and follow-up of gene expression patterns in healthy brains provide support for an involvement of neurodevelopmental processes in the etiology of this neuropsychiatric disease. Future studies are required to further evaluate the relevance of the implicated genes on pathway functioning and clinical aspects of BD

    Identification of a Bipolar Disorder Vulnerable Gene CHDH at 3p21.1

    Get PDF
    Genome-wide analysis (GWA) is an effective strategy to discover extreme effects surpassing genome-wide significant levels in studying complex disorders; however, when sample size is limited, the true effects may fail to achieve genome-wide significance. In such case, there may be authentic results among the pools of nominal candidates, and an alternative approach is to consider nominal candidates but are replicable across different samples. Here, we found that mRNA expression of the choline dehydrogenase gene (CHDH) was uniformly upregulated in the brains of bipolar disorder (BPD) patients compared with healthy controls across different studies. Follow-up genetic analyses of CHDH variants in multiple independent clinical datasets (including 11,564 cases and 17,686 controls) identified a risk SNP rs9836592 showing consistent associations with BPD (P meta = 5.72 × 10(-4)), and the risk allele indicated an increased CHDH expression in multiple neuronal tissues (lowest P = 6.70 × 10(-16)). These converging results may identify a nominal but true BPD susceptibility gene CHDH. Further exploratory analysis revealed suggestive associations of rs9836592 with childhood intelligence (P = 0.044) and educational attainment (P = 0.0039), a 'proxy phenotype' of general cognitive abilities. Intriguingly, the CHDH gene is located at chromosome 3p21.1, a risk region implicated in previous BPD genome-wide association studies (GWAS), but CHDH is lying outside of the core GWAS linkage disequilibrium (LD) region, and our studied SNP rs9836592 is ∼1.2 Mb 3' downstream of the previous GWAS loci (e.g., rs2251219) with no LD between them; thus, the association observed here is unlikely a reflection of previous GWAS signals. In summary, our results imply that CHDH may play a previously unknown role in the etiology of BPD and also highlight the informative value of integrating gene expression and genetic code in advancing our understanding of its biological basis

    Association of Attention-Deficit/Hyperactivity Disorder and Depression Polygenic Scores with Lithium Response: A Consortium for Lithium Genetics Study

    Get PDF
    Response to lithium varies widely between individuals with bipolar disorder (BD). Polygenic risk scores (PRSs) can uncover pharmacogenomics effects and may help predict drug response. Patients (N = 2,510) with BD were assessed for long-term lithium response in the Consortium on Lithium Genetics using the Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder score. PRSs for attention-deficit/hyperactivity disorder (ADHD), major depressive disorder (MDD), and schizophrenia (SCZ) were computed using lassosum and in a model including all three PRSs and other covariates, and the PRS of ADHD (β = −0.14; 95% confidence interval [CI]: −0.24 to −0.03; p value = 0.010) and MDD (β = −0.16; 95% CI: −0.27 to −0.04; p value = 0.005) predicted worse quantitative lithium response. A higher SCZ PRS was associated with higher rates of medication nonadherence (OR = 1.61; 95% CI: 1.34–1.93; p value = 2e−7). This study indicates that genetic risk for ADHD and depression may influence lithium treatment response. Interestingly, a higher SCZ PRS was associated with poor adherence, which can negatively impact treatment response. Incorporating genetic risk of ADHD, depression, and SCZ in combination with clinical risk may lead to better clinical care for patients with BD

    Characterisation of age and polarity at onset in bipolar disorder

    Get PDF
    Background Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools. Aims To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics. Method Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts. Results Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO. Conclusions AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses
    corecore