3,232 research outputs found
Port Hinterland Modelling Based on Port Choice
This paper presents a new approach for hinterland modelling based on the results of port choice modelling. The paper follows the idea that the shippers’ port choice is a trade-off between various objective and subjective factors. The presented model tackles the problem by applying the AHP method in order to obtain ports’ preference rates based on subjective factors, and combine them with objective factors, which include port operation costs, sailing times, and land transport costs using MILP. The ports’ hinterlands are modelled by finding the optimal port of choice for different locations across Europe and merging the identical results. The model can be used in order to produce captive hinterland of ports and can also be exploited in order to analyse how changes in the traffic infrastructure influence the size of hinterlands
Studies of irradiated AMS H35 CMOS detectors for the ATLAS tracker upgrade
Silicon detectors based on the HV-CMOS technology are being investigated as
possible candidate for the outer layers of the ATLAS pixel detector for the
High Luminosity LHC. In this framework the H35Demo ASIC has been produced in
the 350 nm AMS technology (H35). The H35Demo chip has a large area () and includes four different pixel matrices and
three test structures. In this paper the radiation hardness properties, in
particular the evolution of the depletion region with fluence is studied using
edge-TCT on test structures. Measurements on the test structures from chips
with different substrate resistivity are shown for non irradiated and
irradiated devices up to a cumulative fluence of
Performance of irradiated thin n-in-p planar pixel sensors for the ATLAS Inner Tracker upgrade
The ATLAS collaboration will replace its tracking detector with new all
silicon pixel and strip systems. This will allow to cope with the higher
radiation and occupancy levels expected after the 5-fold increase in the
luminosity of the LHC accelerator complex (HL-LHC). In the new tracking
detector (ITk) pixel modules with increased granularity will implement to
maintain the occupancy with a higher track density. In addition, both sensors
and read-out chips composing the hybrid modules will be produced employing more
radiation hard technologies with respect to the present pixel detector. Due to
their outstanding performance in terms of radiation hardness, thin n-in-p
sensors are promising candidates to instrument a section of the new pixel
system. Recently produced and developed sensors of new designs will be
presented. To test the sensors before interconnection to chips, a punch-through
biasing structure has been implemented. Its design has been optimized to
decrease the possible tracking efficiency losses observed. After irradiation,
they were caused by the punch-through biasing structure. A sensor compatible
with the ATLAS FE-I4 chip with a pixel size of 50x250 m,
subdivided into smaller pixel implants of 30x30 m size was
designed to investigate the performance of the 50x50 m
pixel cells foreseen for the HL-LHC. Results on sensor performance of 50x250
and 50x50 m pixel cells in terms of efficiency, charge
collection and electric field properties are obtained with beam tests and the
Transient Current Technique
Neutron irradiation test of depleted CMOS pixel detector prototypes
Charge collection properties of depleted CMOS pixel detector prototypes
produced on p-type substrate of 2 kcm initial resistivity (by LFoundry
150 nm process) were studied using Edge-TCT method before and after neutron
irradiation. The test structures were produced for investigation of CMOS
technology in tracking detectors for experiments at HL-LHC upgrade.
Measurements were made with passive detector structures in which current pulses
induced on charge collecting electrodes could be directly observed. Thickness
of depleted layer was estimated and studied as function of neutron irradiation
fluence. An increase of depletion thickness was observed after first two
irradiation steps to 110 n/cm and 510
n/cm and attributed to initial acceptor removal. At higher fluences the
depletion thickness at given voltage decreases with increasing fluence because
of radiation induced defects contributing to the effective space charge
concentration. The behaviour is consistent with that of high resistivity
silicon used for standard particle detectors. The measured thickness of the
depleted layer after irradiation with 110 n/cm is more than
50 m at 100 V bias. This is sufficient to guarantee satisfactory
signal/noise performance on outer layers of pixel trackers in HL-LHC
experiments
R&D Paths of Pixel Detectors for Vertex Tracking and Radiation Imaging
This report reviews current trends in the R&D of semiconductor pixellated
sensors for vertex tracking and radiation imaging. It identifies requirements
of future HEP experiments at colliders, needed technological breakthroughs and
highlights the relation to radiation detection and imaging applications in
other fields of science.Comment: 17 pages, 2 figures, submitted to the European Strategy Preparatory
Grou
Leakage current simulations of Low Gain Avalanche Diode with improved Radiation Damage Modeling
We report precise TCAD simulations of IHEP-IME-v1 Low Gain Avalanche Diode
(LGAD) calibrated by secondary ion mass spectroscopy (SIMS). Our setup allows
us to evaluate the leakage current, capacitance, and breakdown voltage of LGAD,
which agree with measurements' results before irradiation. And we propose an
improved LGAD Radiation Damage Model (LRDM) which combines local acceptor
removal with global deep energy levels. The LRDM is applied to the IHEP-IME-v1
LGAD and able to predict the leakage current well at -30 C after an
irradiation fluence of . The
charge collection efficiency (CCE) is under development
Charge collection and field profile studies of heavily irradiated strip sensors for the ATLAS inner tracker upgrade
The ATLAS group has evaluated the charge collection in silicon microstrip sensors irradiated up to a fluence of 1×1016 neq/cm2, exceeding the maximum of 1.6×1015 neq/cm2 expected for the strip tracker during the high luminosity LHC (HL-LHC) period including a safety factor of 2. The ATLAS12, n+-on-p type sensor, which is fabricated by Hamamatsu Photonics (HPK) on float zone (FZ) substrates, is the latest barrel sensor prototype. The charge collection from the irradiated 1×1 cm2 barrel test sensors has been evaluated systematically using penetrating β-rays and an Alibava readout system. The data obtained at different measurement sites are compared with each other and with the results obtained from the previous ATLAS07 design. The results are very consistent, in particular, when the deposit charge is normalized by the sensor's active thickness derived from the edge transient current technique (edge-TCT) measurements. The measurements obtained using β-rays are verified to be consistent with the measurements using an electron beam. The edge-TCT is also effective for evaluating the field profiles across the depth. The differences between the irradiated ATLAS07 and ATLAS12 samples have been examined along with the differences among the samples irradiated with different radiation sources: neutrons, protons, and pions. The studies of the bulk properties of the devices show that the devices can yield a sufficiently large signal for the expected fluence range in the HL-LHC, thereby acting as precision tracking sensors
- …