36 research outputs found

    Surfing and dining on the "plastisphere": Microbial life on plastic marine debris

    Get PDF
    Plastic marine debris represents a global threat for the marine environment, having serious consequences for the ocean, the wildlife and the human health. While the plastics distribution, fate, persistence and toxicity mechanisms for the marine fauna have been more studied in the last decade, small efforts have been devoted to identify and characterize marine microbes that colonize plastic and microplastic debris in the ocean, and their potential to degrade plastics. Here we review the knowledge on the microbial biodiversity and degradation mechanisms of marine plastic debris, and present data, based on metagenomic analyses, on the distribution patterns of genes potentially involved in microbially-mediated plastic degradation in coastal locations across the global ocean. Most studies on plastic-colonizing microbes have focused on seawater rather than sediment, with most studies underlining striking differences in composition between assemblages attached to plastic particles and those in the surrounding environment. The diversity of microbes attached to plastic is high, and the core epiplastic microbial assemblages include often hydrocarbon-degrading bacteria, as well as prokaryotic and eukaryotic phototrophs. Several marine microbes have shown to be able to degrade or deteriorate plastic in the laboratory, or to grow on plastic as the only source of carbon, while indirect evidences suggest that microbially-mediated degradation of recalcitrant plastics also occur in the ocean, though at very low rates. Metagenomic analyses show that plastic degradation-related genes are present in microbial assemblages in several coastal ocean sites, with relative abundance related to the magnitude of plastic pollution at each site. Further research is required to study microbial plastic-degraders in the marine ecosystem, to decipher and exploit the potential of microbial consortia to degrade or mineralize plastic compounds, and to better understand the fate and residence times of plastic waste in the ocean

    Biostimulation of in situ microbial degradation processes in organically-enriched sediments mitigates the impact of aquaculture

    Get PDF
    Abstract Fish farm deposition, resulting in organic matter accumulation on bottom sediments, has been identified as among the main phenomena causing negative environmental impacts in aquaculture. An in situ bioremediation treatment was carried out in order to reduce the organic matter accumulation in the fish farm sediments by promoting the natural microbial biodegradation processes. To assess the effect of the treatment, the concentration of organic matter in the sediment and its microbial degradation, as well as the response of the benthic prokaryotic community, were investigated. The results showed a significant effect of the treatment in stimulating microbial degradation rates, and the consequent decrease in the concentration of biochemical components beneath the cages during the treatment. During the bioremediation process, the prokaryotic community in the fish farm sediment responded to the overall improvement of the sediment conditions by showing the decrease of certain anaerobic taxa (e.g. Clostridiales, Acidaminobacteraceae and Caldilinaceae). This suggested that the bioactivator was effective in promoting a shift from an anaerobic to an aerobic metabolism in the prokaryotic community. However, the larger importance of Lachnospiraceae (members of the gut and faecal microbiota of the farmed fishes) in treated compared to non-treated sediments suggested that the bioactivator was not efficient in reducing the accumulation of faecal bacteria from the farmed fishes. Our results indicate that bioremediation is a promising tool to mitigate the aquaculture impact in fish farm sediments, and that further research needs to be oriented to identifying more successful interventions able to specifically target also fish-faeces related microbes

    Host-associated and Environmental Microbiomes in an Open-Sea Mediterranean Gilthead Sea Bream Fish Farm

    Get PDF
    Gilthead seabream is among the most important farmed fish species in the Mediterranean Sea. Several approaches are currently applied to assure a lower impact of diseases and higher productivity, including the exploration of the fish microbiome and its manipulation as a sustainable alternative to improve aquaculture practices. Here, using 16S rRNA gene high-throughput sequencing, we explored the microbiome of farmed seabream to assess similarities and differences among microbial assemblages associated to different tissues and compare them with those in the surrounding environment. Seabream had distinct associated microbiomes according to the tissue and compared to the marine environment. The gut hosted the most diverse microbiome; different sets of dominant ASVs characterized the environmental and fish samples. The similarity between fish and environmental microbiomes was higher in seawater than sediment (up to 7.8 times), and the highest similarity (3.9%) was observed between gill and seawater, suggesting that gills are more closely interacting with the environment. We finally analyzed the potential connections occurring among microbiomes. These connections were relatively low among the host's tissues and, in particular, between the gut and the others fish-related microbiomes; other tissues, including skin and gills, were found to be the most connected microbiomes. Our results suggest that, in mariculture, seabream microbiomes reflect only partially those in their surrounding environment and that the host is the primary driver shaping the seabream microbiome. These data provide a step forward to understand the role of the microbiome in farmed fish and farming environments, useful to enhance disease control, fish health, and environmental sustainability

    Major Role of Surrounding Environment in Shaping Biofilm Community Composition on Marine Plastic Debris

    Get PDF
    Plastic debris in aquatic environments is colonized by microbes, yet factors influencing biofilm development and composition on plastics remain poorly understood. Here, we explored the microbial assemblages associated with different types of plastic debris collected from two coastal sites in the Mediterranean Sea. All plastic samples were heavily colonized by prokaryotes, with abundances up to 1.9 × 107 cells/cm2. Microbial assemblages on plastics significantly differed between the two geographic areas but not between polymer types, suggesting a major role of the environment as source for the plastisphere composition. Nevertheless, plastic communities differed from those in the surrounding seawater and sediments, indicating a further selection of microbial taxa on the plastic substrates. The presence of potential pathogens on the plastic surface reflected the levels of microbial pollution in the surrounding environment, regardless of the polymer type, and confirmed the role of plastics as carriers for pathogenic microorganisms across the coastal ocean, deserving further investigations

    Status of faecal pollution in ports: A basin-wide investigation in the Adriatic Sea

    Get PDF
    Ports are subject to a variety of anthropogenic impacts, and there is mounting evidence of faecal contamination through several routes. Yet, little is known about pollution in ports by faecal indicator bacteria (FIB). FIB spatio-temporal dynamics were assessed in 12 ports of the Adriatic Sea, a semi-enclosed basin under strong anthropogenic pressure, and their relationships with environmental variables were explored to gain insight into pollution sources. FIB were abundant in ports, often more so than in adjacent areas ; their abundance patterns were related to salinity, oxygen, and nutrient levels. In addition, a molecular method, quantitative (q)PCR, was used to quantify FIB. qPCR enabled faster FIB determination and water quality monitoring that culture-based methods. These data provide robust baseline evidence of faecal contamination in ports and can be used to improve the management of routine port activities (dredging and ballast water exchange), having potential to spread pathogens in the sea

    Identification of Marine Biotechnology Value Chains with High Potential in the Northern Mediterranean Region

    Get PDF
    © 2023. The authors. This document is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by /4.0/ This document is the Accepted version of a Published Work that appeared in final form in Marine Drugs. To access the final edited and published work see https://doi.org/10.3390/md21070416Marine (blue) biotechnology is an emerging field enabling the valorization of new products and processes with massive potential for innovation and economic growth. In the Mediterranean region, this innovation potential is not exploited as well as in other European regions due to a lack of a clear identification of the different value chains and the high fragmentation of business innovation initiatives. As a result, several opportunities to create an innovative society are being missed. To address this problem, eight Northern Mediterranean countries (Croatia, France, Greece, Mar. Drugs 2023, 21, 416. https://doi.org/10.3390/md21070416 https://www.mdpi.com/journal/marinedrugs Mar. Drugs 2023, 21, 416 2 of 26 Italy, Montenegro, Portugal, Slovenia and Spain) established five national blue biotechnology hubs to identify and address the bottlenecks that prevent the development of marine biotechnology in the region. Following a three-step approach (1. Analysis: setting the scene; 2. Transfer: identification of promising value chains; 3. Capitalization: community creation), we identified the three value chains that are most promising for the Northern Mediterranean region: algae production for added-value compounds, integrated multi-trophic aquaculture (IMTA) and valorization aquaculture/fisheries/processing by-products, unavoidable/unwanted catches and discards. The potential for the development and the technical and non-technical skills that are necessary to advance in this exciting field were identified through several stakeholder events which provided valuable insight and feedback that should be addressed for marine biotechnology in the Northern Mediterranean region to reach its full potential

    Identification of Marine Biotechnology Value Chains with High Potential in the Northern Mediterranean Region

    Get PDF
    ©2023. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/ This document is the Published, version of a Published Work that appeared in final form in Marine Drugs. To access the final edited and published work see https://doi.org/ 10.3390/md21070416Marine (blue) biotechnology is an emerging field enabling the valorization of new products and processes with massive potential for innovation and economic growth. In the Mediterranean region, this innovation potential is not exploited as well as in other European regions due to a lack of a clear identification of the different value chains and the high fragmentation of business innovation initiatives. As a result, several opportunities to create an innovative society are being missed. To address this problem, eight Northern Mediterranean countries (Croatia, France, Greece Italy, Montenegro, Portugal, Slovenia and Spain) established five national blue biotechnology hubs to identify and address the bottlenecks that prevent the development of marine biotechnology in the region. Following a three-step approach (1. Analysis: setting the scene; 2. Transfer: identifi cation of promising value chains; 3. Capitalization: community creation), we identified the three value chains that are most promising for the Northern Mediterranean region: algae production for added-value compounds, integrated multi-trophic aquaculture (IMTA) and valorization aquacul ture/fisheries/processing by-products, unavoidable/unwanted catches and discards. The potential for the development and the technical and non-technical skills that are necessary to advance in this exciting field were identified through several stakeholder events which provided valuable insight and feedback that should be addressed for marine biotechnology in the Northern Mediterranean region to reach its full potential

    The ocean sampling day consortium

    Get PDF
    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits
    corecore