275 research outputs found

    A search for 4750- and 4765-MHz OH masers in Southern Star Forming Regions

    Get PDF
    We have used the Australia Telescope Compact Array (ATCA) to make a sensitive (5-σ\sigma \simeq 100 mJy) search for maser emission from the 4765-MHz 2Π1/2^2\Pi_{1/2} F=1\to0 transition of OH. Fifty five star formation regions were searched and maser emission with a peak flux density in excess of 100 mJy was detected toward fourteen sites, with ten of these being new discoveries. In addition we observed the 4750-MHz 2Π1/2^2\Pi_{1/2} F=1\to1 transition towards a sample of star formation regions known to contain 1720-MHz OH masers, detecting marginal maser emission from G348.550-0.979. If confirmed this would be only the second maser discovered from this transition. The occurrence of 4765-MHz OH maser emission accompanying 1720-MHz OH masers in a small number of well studied star formation regions has lead to a general perception in the literature that the two transitions favour similar physical conditions. Our search has found that the presence of the excited-state 6035-MHz OH transition is a much better predictor of 4765-MHz OH maser emission from the same region than is 1720-MHz OH maser emission. Combining our results with those of previous high resolution observations of other OH transitions we have examined the published theoretical models of OH masers and find that none of them predict any conditions in which the 1665-, 6035- and 4765-MHz transitions are simultaneously inverted. Erratum abstract: Dodson & Ellingsen (2002) included several observations with significant pointing errors, invalidating the upper limits found in these directions. These have now been reobserved or recalculated. A new table of upper limits has been generated, and two more masers that would have been seen have been found.Comment: Included an Erratum with Max as another author. This erratum was rejected by MNRAS (Feb 04) as it contained too much data. Resubmitted as a paper (Jun 04). Rejected (Sep 04) it had too little data. Resubmitted as reduced erratum (Apr 05). Still waitin

    Thermal Infrared MMTAO Observations of the HR 8799 Planetary System

    Full text link
    We present direct imaging observations at wavelengths of 3.3, 3.8 (L',band), and 4.8 (M band) microns, for the planetary system surrounding HR 8799. All three planets are detected at L'. The c and d component are detected at 3.3 microns, and upper limits are derived from the M band observations. These observations provide useful constraints on warm giant planet atmospheres. We discuss the current age constraints on the HR 8799 system, and show that several potential co-eval objects can be excluded from being co-moving with the star. Comparison of the photometry is made to models for giant planet atmospheres. Models which include non-equilibrium chemistry provide a reasonable match to the colors of c and d. From the observed colors in the thermal infrared we estimate T_eff < 960 K for b, and T_eff=1300 and 1170 K for c and d, respectively. This provides an independent check on the effective temperatures and thus masses of the objects from the Marois 2008 results.Comment: 16 pages, 6 figures, accepted to Ap

    Exploring the conditions required to form giant planets via gravitational instability in massive protoplanetary discs

    Full text link
    We carry out global three-dimensional radiation hydrodynamical simulations of self-gravitating accretion discs to determine if, and under what conditions, a disc may fragment to form giant planets. We explore the parameter space (in terms of the disc opacity, temperature and size) and include the effect of stellar irradiation. We find that the disc opacity plays a vital role in determining whether a disc fragments. Specifically, opacities that are smaller than interstellar Rosseland mean values promote fragmentation (even at small radii, R < 25AU) since low opacities allow a disc to cool quickly. This may occur if a disc has a low metallicity or if grain growth has occurred. With specific reference to the HR 8799 planetary system, given its star is metal-poor, our results suggest that the formation of its imaged planetary system could potentially have occurred by gravitational instability. We also find that the presence of stellar irradiation generally acts to inhibit fragmentation (since the discs can only cool to the temperature defined by stellar irradiation). However, fragmentation may occur if the irradiation is sufficiently weak that it allows the disc to attain a low Toomre stability parameter.Comment: Accepted for publication by MNRAS. 11 pages, 12 figures

    Magnetic Fields in Large Diameter HII Regions Revealed by the Faraday Rotation of Compact Extragalactic Radio Sources

    Full text link
    We present a study of the line-of-sight magnetic fields in five large-diameter Galactic HII regions. Using the Faraday rotation of background polarized radio sources, as well as dust-corrected H-alpha surface brightness as a probe of electron density, we estimated the strength and orientation of the magnetic field along 93 individual sight-lines through the HII regions. Each of the HII regions displayed a coherent magnetic field. The magnetic field strength (line-of-sight component) in the regions ranges from 2 to 6 microgauss, which is similar to the typical magnetic field strength in the diffuse interstellar medium. We investigated the relationship between magnetic field strength and electron density in the 5 HII regions. The slope of magnetic field vs. density in the low-density regime (0.8 < n_e < 30 per cubic cm) is very slightly above zero. We also calculated the ratio of thermal to magnetic pressure, beta_th, for each data point, which fell in the range 1.01 < beta_th < 25. Finally, we studied the orientation of the magnetic field in the solar neighborhood (d < 1.1 kpc) using our data from 5 HII regions along with existing measurements of the line-of-sight magnetic field strength from polarized pulsars whose distances have been determined from their annual parallax. We identify a net direction for the magnetic field in the solar neighborhood, but find no evidence for a preferred vertical direction of the magnetic field above or below the Galactic plane.Comment: Accepted to the Astrophysical Journal, June 4th 201

    Discovery of the Coldest Imaged Companion of a Sun-Like Star

    Full text link
    We present the discovery of a brown dwarf or possible planet at a projected separation of 1.9" = 29 AU around the star GJ 758, placing it between the separations at which substellar companions are expected to form by core accretion (~5 AU) or direct gravitational collapse (typically >100 AU). The object was detected by direct imaging of its thermal glow with Subaru/HiCIAO. At 10-40 times the mass of Jupiter and a temperature of 550-640 K, GJ 758 B constitutes one of the few known T-type companions, and the coldest ever to be imaged in thermal light around a Sun-like star. Its orbit is likely eccentric and of a size comparable to Pluto's orbit, possibly as a result of gravitational scattering or outward migration. A candidate second companion is detected at 1.2" at one epoch.Comment: 5 pages, 3 figures, 2 tables. Accepted for publication in ApJ Letter

    Food Packaging and Bisphenol A and Bis(2-Ethyhexyl) Phthalate Exposure: Findings from a Dietary Intervention

    Get PDF
    Background: Bisphenol A (BPA) and bis(2-ethylhexyl) phthalate (DEHP) are high-production-volume chemicals used in plastics and resins for food packaging. They have been associated with endocrine disruption in animals and in some human studies. Human exposure sources have been estimated, but the relative contribution of dietary exposure to total intake has not been studied empirically

    Near-Infrared Spectroscopy of the Extrasolar Planet HR 8799 b

    Full text link
    [Abridged] We present 2.12-2.23 um high contrast integral field spectroscopy of the extrasolar planet HR 8799 b. Our observations were obtained with OSIRIS on the Keck II telescope and sample the 2.2 um CH4 feature, which is useful for spectral classification and as a temperature diagnostic for ultracool objects. The spectrum of HR 8799 b is relatively featureless, with little or no methane absorption, and does not exhibit the strong CH4 seen in T dwarfs of similar absolute magnitudes. Overall, we find that HR 8799 b has a spectral type consistent with L5-T2, although its SED is atypical compared to most field objects. We fit the 2.2 um spectrum and the infrared SED using the Hubeny & Burrows, Burrows et al., and Ames-Dusty model atmosphere grids, which incorporate nonequilibrium chemistry, non-solar metallicities, and clear and cloudy variants. No models agree with all of the data, but those with intermediate clouds produce significantly better fits. The largest discrepancy occurs in the J-band, which is highly suppressed in HR 8799 b. The best-fitting effective temperatures range from 1300-1700 K with radii between ~0.3-0.5 RJup. These values are inconsistent with evolutionary model-derived values of 800-900 K and 1.1-1.3 RJup based on the luminosity of HR 8799 b and the age of HR 8799, a discrepancy that probably results from imperfect atmospheric models or the limited range of physical parameters covered by the models. The low temperature inferred from evolutionary models indicates that HR 8799 b is ~400 K cooler than field L/T transition objects, providing further evidence that the L/T transition is gravity-dependent. With an unusually dusty photosphere, an exceptionally low luminosity for its spectral type, and hints of extreme secondary physical parameters, HR 8799 b appears to be unlike any class of field brown dwarf currently known.Comment: 21 pages, 23 figures; accepted by Ap

    Deep infrared imaging of close companions to austral A- and F-type stars

    Full text link
    The search for substellar companions around stars with different masses along the main sequence is critical to understand the different processes leading to the formation of low-mass stars, brown dwarfs, and planets. In particular, the existence of a large population of low-mass stars and brown dwarfs physically bound to early-type main-sequence stars could imply that the massive planets recently imaged at wide separations (10-100 AU) around A-type stars are disc-born objects in the low-mass tail of the binary distribution. Our aim is to characterize the environment of early-type main-sequence stars by detecting brown dwarf or low-mass star companions between 10 and 500 AU. High contrast and high angular resolution near-infrared images of a sample of 38 southern A- and F-type stars have been obtained between 2005 and 2009 with the instruments VLT/NaCo and CFHT/PUEO. Multi-epoch observations were performed to discriminate comoving companions from background contaminants. About 41 companion candidates were imaged around 23 stars. Follow-up observations for 83% of these stars allowed us to identify a large number of background contaminants. We report the detection of 7 low-mass stars with masses between 0.1 and 0.8 Msun in 6 multiple systems: the discovery of a M2 companion around the A5V star HD14943 and the detection of the B component of the F4V star HD41742 quadruple system; we resolve the known companion of the F6.5V star HD49095 as a short-period binary system composed by 2 M/L dwarfs. We also resolve the companions to the astrometric binaries iot Crt (F6.5V) and 26 Oph (F3V), and identify a M3/M4 companion to the F4V star omi Gru, associated with a X-ray source. The global multiplicity fraction measured in our sample of A and F stars is >16%. A parallel velocimetric survey of our stars let us conclude that the imaged companions can impact on the observed radial velocity measurements.Comment: 21 pages, 12 figures, 7 tables. Accepted for publication in Astronomy and Astrophysics. The full version of the preprint including the appendices (24 pages of figures), can be retrieved at http://www-laog.obs.ujf-grenoble.fr/~dehrenre/articles/afsurvey

    First Light LBT AO Images of HR 8799 bcde at 1.65 and 3.3 Microns: New Discrepancies between Young Planets and Old Brown Dwarfs

    Full text link
    As the only directly imaged multiple planet system, HR 8799 provides a unique opportunity to study the physical properties of several planets in parallel. In this paper, we image all four of the HR 8799 planets at H-band and 3.3 microns with the new LBT adaptive optics system, PISCES, and LBTI/LMIRCam. Our images offer an unprecedented view of the system, allowing us to obtain H and 3.3$ micron photometry of the innermost planet (for the first time) and put strong upper-limits on the presence of a hypothetical fifth companion. We find that all four planets are unexpectedly bright at 3.3 microns compared to the equilibrium chemistry models used for field brown dwarfs, which predict that planets should be faint at 3.3 microns due to CH4 opacity. We attempt to model the planets with thick-cloudy, non-equilibrium chemistry atmospheres, but find that removing CH4 to fit the 3.3 micron photometry increases the predicted L' (3.8 microns) flux enough that it is inconsistent with observations. In an effort to fit the SED of the HR 8799 planets, we construct mixtures of cloudy atmospheres, which are intended to represent planets covered by clouds of varying opacity. In this scenario, regions with low opacity look hot and bright, while regions with high opacity look faint, similar to the patchy cloud structures on Jupiter and L/T transition brown-dwarfs. Our mixed cloud models reproduce all of the available data, but self-consistent models are still necessary to demonstrate their viability.Comment: Accepted to Ap
    corecore