58 research outputs found

    Control of Flowering and Cell Fate by LIF2, an RNA Binding Partner of the Polycomb Complex Component LHP1

    Get PDF
    Polycomb Repressive Complexes (PRC) modulate the epigenetic status of key cell fate and developmental regulators in eukaryotes. The chromo domain protein LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is a subunit of a plant PRC1-like complex in Arabidopsis thaliana and recognizes histone H3 lysine 27 trimethylation, a silencing epigenetic mark deposited by the PRC2 complex. We have identified and studied an LHP1-Interacting Factor2 (LIF2). LIF2 protein has RNA recognition motifs and belongs to the large hnRNP protein family, which is involved in RNA processing. LIF2 interacts in vivo, in the cell nucleus, with the LHP1 chromo shadow domain. Expression of LIF2 was detected predominantly in vascular and meristematic tissues. Loss-of-function of LIF2 modifies flowering time, floral developmental homeostasis and gynoecium growth determination. lif2 ovaries have indeterminate growth and produce ectopic inflorescences with severely affected flowers showing proliferation of ectopic stigmatic papillae and ovules in short-day conditions. To look at how LIF2 acts relative to LHP1, we conducted transcriptome analyses in lif2 and lhp1 and identified a common set of deregulated genes, which showed significant enrichment in stress-response genes. By comparing expression of LHP1 targets in lif2, lhp1 and lif2 lhp1 mutants we showed that LIF2 can either antagonize or act with LHP1. Interestingly, repression of the FLC floral transcriptional regulator in lif2 mutant is accompanied by an increase in H3K27 trimethylation at the locus, without any change in LHP1 binding, suggesting that LHP1 is targeted independently from LIF2 and that LHP1 binding does not strictly correlate with gene expression. LIF2, involved in cell identity and cell fate decision, may modulate the activity of LHP1 at specific loci, during specific developmental windows or in response to environmental cues that control cell fate determination. These results highlight a novel link between plant RNA processing and Polycomb regulation

    Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at root s=7 and 8 TeV

    Get PDF
    70 pages plus author lists + cover page (104 pages total), 32 figures, 22 tables, submitted to JHEP. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2015-07/ and at http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-15-002/Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a WW or a ZZ boson or a pair of top quarks, and of the six decay modes H→ZZ,WWH \to ZZ, WW, γγ,ττ,bb\gamma\gamma, \tau\tau, bb, and ΌΌ\mu\mu. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton--proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb−1^{-1} at s=7\sqrt{s}=7 TeV and 20 fb−1^{-1} at s=8\sqrt{s} = 8 TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 ±\pm 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the H→ττH \to \tau\tau decay of 5.45.4 and 5.55.5 standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.Peer reviewe

    Stomatal conductance, growth and root signaling in Betula pendula seedlings subjected to partial soil drying

    No full text
    International audienceSeedlings of Betula pendula Roth were grown with their root systems separated between two soil compartments. Four treatments were imposed: (i) adequate irrigation in both compartments (WW, controls); (ii) adequate irrigation in one compartment and drought in the other compartment (WD); (iii) drought in both compartments (DD); and (iv) half of the root system severed and the remainder kept well-watered (root excision, RE). Predawn leaf water potential, stomatal conductance, soil-to-leaf specific hydraulic conductance, and root and leaf growth decreased in DD-treated seedlings, which also displayed severe leaf shedding (30% loss in leaf area). The DD treatment also resulted in increased concentrations of abscisic acid (ABA) and its glucose ester in the xylem sap of roots and shoots compared to concentrations in control seedlings (about 200 versus 20 nM). Despite the difference in xylem sap concentrations, total ABA flux to the shoots was similar in the two treatments (1–2 pmol ABA m–2 leaf area s–1) as a result of reduced transpiration in the DD-treated seedlings. Compared with root growth in control plants, root growth increased in the RE-treated plants and decreased in the drying compartment of the WD treatment; however, the RE and WD treatments only slightly reduced leaf expansion, and had no detectable effects on shoot water relations or ABA concentrations of the root and shoot xylem sap. We conclude that short-term soil water depletion affecting only 50% of the root system does not cause a measurable stress response in birch shoots, despite root growth cessation in the fraction of drying soil

    Stomatal conductance, growth and root signaling in Betula pendula seedlings subjected to partial soil drying

    No full text
    International audienceSeedlings of Betula pendula Roth were grown with their root systems separated between two soil compartments. Four treatments were imposed: (i) adequate irrigation in both compartments (WW, controls); (ii) adequate irrigation in one compartment and drought in the other compartment (WD); (iii) drought in both compartments (DD); and (iv) half of the root system severed and the remainder kept well-watered (root excision, RE). Predawn leaf water potential, stomatal conductance, soil-to-leaf specific hydraulic conductance, and root and leaf growth decreased in DD-treated seedlings, which also displayed severe leaf shedding (30% loss in leaf area). The DD treatment also resulted in increased concentrations of abscisic acid (ABA) and its glucose ester in the xylem sap of roots and shoots compared to concentrations in control seedlings (about 200 versus 20 nM). Despite the difference in xylem sap concentrations, total ABA flux to the shoots was similar in the two treatments (1–2 pmol ABA m–2 leaf area s–1) as a result of reduced transpiration in the DD-treated seedlings. Compared with root growth in control plants, root growth increased in the RE-treated plants and decreased in the drying compartment of the WD treatment; however, the RE and WD treatments only slightly reduced leaf expansion, and had no detectable effects on shoot water relations or ABA concentrations of the root and shoot xylem sap. We conclude that short-term soil water depletion affecting only 50% of the root system does not cause a measurable stress response in birch shoots, despite root growth cessation in the fraction of drying soil

    A T-DNA Insertion Knockout of the Bifunctional Lysine-Ketoglutarate Reductase/Saccharopine Dehydrogenase Gene Elevates Lysine Levels in Arabidopsis Seeds

    No full text
    Plants possess both anabolic and catabolic pathways for the essential amino acid lysine (Lys). However, although the biosynthetic pathway was clearly shown to regulate Lys accumulation in plants, the functional significance of Lys catabolism has not been experimentally elucidated. To address this issue, we have isolated an Arabidopsis knockout mutant with a T-DNA inserted into exon 13 of the gene encoding Lys ketoglutarate reductase/saccharopine dehydrogenase. This bifunctional enzyme controls the first two steps of Lys catabolism. The phenotype of the LKR/SDH knockout was indistinguishable from wild-type plants under normal growth conditions, suggesting that Lys catabolism is not an essential pathway under standard growth conditions. However, mature seeds of the knockout mutant over-accumulated Lys compared with wild-type plants. This report provides the first direct evidence for the functional significance of Lys catabolism in regulating Lys accumulation in seeds. Such a knockout mutant may also provide new perspectives to improve the level of the essential amino acid Lys in plant seeds

    Stomatal conductance, growth and root signaling in Betula pendula seedlings subjected to partial soil drying

    No full text
    Seedlings of Betula pendula Roth were grown with their root systems separated between two soil compartments. Four treatments were imposed: (i) adequate irrigation in both compartments (WW, controls); (ii) adequate irrigation in one compartment and drought in the other compartment (WD); (iii) drought in both compartments (DD); and (iv) half of the root system severed and the remainder kept well-watered (root excision, RE). Predawn leaf water potential, stomatal conductance, soil-to-leaf specific hydraulic conductance, and root and leaf growth decreased in DD-treated seedlings, which also displayed severe leaf shedding (30% loss in leaf area). The DD treatment also resulted in increased concentrations of abscisic acid (ABA) and its glucose ester in the xylem sap of roots and shoots compared to concentrations in control seedlings (about 200 versus 20 nM). Despite the difference in xylem sap concentrations, total ABA flux to the shoots was similar in the two treatments (1–2 pmol ABA m–2 leaf area s–1) as a result of reduced transpiration in the DD-treated seedlings. Compared with root growth in control plants, root growth increased in the RE-treated plants and decreased in the drying compartment of the WD treatment; however, the RE and WD treatments only slightly reduced leaf expansion, and had no detectable effects on shoot water relations or ABA concentrations of the root and shoot xylem sap. We conclude that short-term soil water depletion affecting only 50% of the root system does not cause a measurable stress response in birch shoots, despite root growth cessation in the fraction of drying soil

    AtATM Is Essential for Meiosis and the Somatic Response to DNA Damage in Plants

    No full text
    In contrast to yeast or mammalian cells, little is known about the signaling responses to DNA damage in plants. We previously characterized AtATM, an Arabidopsis homolog of the human ATM gene, which is mutated in ataxia telangiectasia, a chromosome instability disorder. The Atm protein is a protein kinase whose activity is induced by DNA damage, particularly DNA double-strand breaks. The phosphorylation targets of Atm include proteins involved in DNA repair, cell cycle control, and apoptosis. Here, we describe the isolation and functional characterization of two Arabidopsis mutants carrying a T-DNA insertion in AtATM. Arabidopsis atm mutants are hypersensitive to Îł-radiation and methylmethane sulfonate but not to UV-B light. In correlation with the radiation sensitivity, atm mutants failed to induce the transcription of genes involved in the repair and/or detection of DNA breaks upon irradiation. In addition, atm mutants are partially sterile, and we show that this effect is attributable to abundant chromosomal fragmentation during meiosis. Interestingly, the transcription of DNA recombination genes during meiosis was not dependent on AtATM, and meiotic recombination occurred at the same rate as in wild-type plants, raising questions about the function of AtAtm during meiosis in plants. Our results demonstrate that AtATM plays a central role in the response to both stress-induced and developmentally programmed DNA damage

    Synthesis of full-length potyvirus cDNA copies suitable for the analysis of genome polymorphism

    No full text
    International audienceNew methods facilitating the synthesis and amplification of full-length cDNA copies of single-stranded viral RNA genomes have been developed. A method is described for the efficient purification of potyviral RNA and total RNA from infected plants and it is shown that they can serve as templates for the efficient synthesis of a full-length, 10 kb long, genomic cDNA. Two different reverse transcriptases were used (AMV-RT and MMLV-RT); only the first reverse transcriptase produced a good quality, full-length cDNA using viral RNA as a template. Surprisingly, MMLV-RT allowed for the full-length cDNA synthesis on virions rather than viral RNA. The PW cDNA, synthesized using either RNA or virions, can be amplified successfully by PCR with high yields of full-length products. Such products are good substrates for the study by RFLP of the total genome polymorphism of virus isolates

    Biological and molecular variability of zucchini yellow mosaic virus on the Island of Martinique

    No full text
    International audienceZucchini yellow mosaic potyvirus (ZYMV) was isolated from zucchini squash on the island of Martinique for the first time in 1992, and it is now widespread on the island. Fourteen isolates collected from different cucurbit crops in 1992 and 1993 exhibited biological and antigenic variability as revealed by using differential hosts and a series of monoclonal antibodies. A partial sequencing of the coat protein and putative polymerase coding regions of the 14 isolates revealed that there was also some molecular variability, lower within the group of Martinique isolates than with ZYMV isolates from other geographical origins. This variability can result either from the introduction to the island of different ZYMV strains, or from a rapid evolution of an introduced ZYMV population with a narrow genetic base. The incidence of the observed variability will affect the development of efficient and durable control strategies
    • 

    corecore