17 research outputs found

    Robust Genetic Transformation System to Obtain Non-chimeric Transgenic Chickpea

    Get PDF
    Chickpea transformation is an important component for the genetic improvement of this crop, achieved through modern biotechnological approaches. However, recalcitrant tissue cultures and occasional chimerism, encountered during transformation, hinder the efficient generation of transgenic chickpeas. Two key parameters, namely micro-injury and light emitting diode (LED)-based lighting were used to increase transformation efficiency. Early PCR confirmation of positive in vitro transgenic shoots, together with efficient grafting and an extended acclimatization procedure contributed to the rapid generation of transgenic plants. High intensity LED light facilitate chickpea plants to complete their life cycle within 9 weeks thus enabling up to two generations of stable transgenic chickpea lines within 8 months. The method was validated with several genes from different sources, either as single or multi-gene cassettes. Stable transgenic chickpea lines containing GUS (uidA), stress tolerance (AtBAG4 and TlBAG), as well as Fe-biofortification (OsNAS2 and CaNAS2) genes have successfully been produced

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    The characterisation of CaNAS2 and biofortification of chickpea

    No full text
    Iron deficiency is a global problem, and one way to reduce it is through biofortification. In this thesis, the iron content of chickpea was improved by genetic modification (GM) with the plant iron metabolism genes, nicotianamine synthase (NAS) and ferritin (FER). Several chickpea cultivars were assessed, and a low-iron cultivar selected for further improvement. A novel chickpea NAS2 gene was also studied for use in this approach, providing greater insight into iron metabolism in plants. Ultimately, GM chickpea were successfully produced, and up to 1.3-fold increase in seed iron content was achieved. This is the first known example of a GM iron biofortified chickpea, and will likely form a foundation for future biofortification work

    Finger on the pulse: Pumping iron into chickpea

    No full text
    Iron deficiency is a major problem in both developing and developed countries, and much of this can be attributed to insufficient dietary intake. Over the past decades several measures, such as supplementation and food fortification, have helped to alleviate this problem. However, their associated costs limit their accessibility and effectiveness, particularly amongst the financially constrained. A more affordable and sustainable option that can be implemented alongside existing measures is biofortification. To date, much work has been invested into staples like cereals and root crops—this has culminated in the successful generation of high iron-accumulating lines in rice and pearl millet. More recently, pulses have gained attention as targets for biofortification. Being secondary staples rich in protein, they are a nutritional complement to the traditional starchy staples. Despite the relative youth of this interest, considerable advances have already been made concerning the biofortification of pulses. Several studies have been conducted in bean, chickpea, lentil, and pea to assess existing germplasm for high iron-accumulating traits. However, little is known about the molecular workings behind these traits, particularly in a leguminous context, and biofortification via genetic modification (GM) remains to be attempted. This review examines the current state of the iron biofortification in pulses, particularly chickpea. The challenges concerning biofortification in pulses are also discussed. Specifically, the potential application of transgenic technology is explored, with focus on the genes that have been successfully used in biofortification efforts in rice

    Investigation of baseline iron levels in Australian chickpea and evaluation of a transgenic biofortification approach

    No full text
    Iron deficiency currently affects over two billion people worldwide despite significant advances in technology and society aimed at mitigating this global health problem. Biofortification of food staples with iron (Fe) represents a sustainable approach for alleviating human Fe deficiency in developing countries, however, biofortification efforts have focused extensively on cereal staples while pulses have been largely overlooked. In this study we describe a genetic engineering (GE) approach to biofortify the pulse crop, chickpea (Cicer arietinum L.), with Fe using a combination of the chickpea nicotianamine synthase 2 (CaNAS2) and soybean (Glycine max) ferritin (GmFER) genes which function in Fe transport and storage, respectively. This study consists of three main components: (1) the establishment for baseline Fe concentration of existing germplam, (2) the isolation and study of expression pattern of the novel CaNAS2 gene, and (3) the generation of GE chickpea overexpressing the CaNAS2 and GmFER genes. Seed of six commercial chickpea cultivars was collected from four different field locations in Australia and assessed for seed Fe concentration. The results revealed little difference between the cultivars assessed, and that chickpea seed Fe was negatively affected where soil Fe bioavailability is low. The desi cultivar HatTrick was then selected for further study. From it, the CaNAS2 gene was cloned and its expression in different tissues examined. The gene was found to be expressed in multiple vegetative tissues under Fe-sufficient conditions, suggesting that it may play a housekeeping role in systemic translocation of Fe. Two GE chickpea events were then generated and the overexpression of the CaNAS2 and GmFER transgenes confirmed. Analysis of nicotianamine (NA) and Fe levels in the GE seeds revealed that NA was nearly doubled compared to the null control while Fe concentration was not changed. Increased NA content in chickpea seed is likely to translate into increased Fe bioavailability and may thus overcome the effect of the bioavailability inhibitors found in pulses; however, further study is required to confirm this. This is the first known example of GE Fe biofortified chickpea; information gleaned from this study can feed into future pulse biofortification work to help alleviate global Fe deficiency

    A wireless and battery-free wound infection sensor based on DNA hydrogel

    No full text
    The confluence of wireless technology and biosensors offers the possibility to detect and manage medical conditions outside of clinical settings. Wound infections represent a major clinical challenge in which timely detection is critical for effective interventions, but this is currently hindered by the lack of a monitoring technology that can interface with wounds, detect pathogenic bacteria, and wirelessly transmit data. Here, we report a flexible, wireless, and battery-free sensor that provides smartphone-based detection of wound infection using a bacteria-responsive DNA hydrogel. The engineered DNA hydrogels respond selectively to deoxyribonucleases associated with pathogenic bacteria through tunable dielectric changes, which can be wirelessly detected using near-field communication. In a mouse acute wound model, we demonstrate that the wireless sensor can detect physiologically relevant amounts of Staphylococcus aureus even before visible manifestation of infection. These results demonstrate strategies for continuous infection monitoring, which may facilitate improved management of surgical or chronic wounds.Agency for Science, Technology and Research (A*STAR)Ministry of Health (MOH)National Medical Research Council (NMRC)Published versionJ.S.H. acknowledges support from grants from the National Research Foundation Singapore (NRFF2017-07 and AISG-GC-2019-002), Ministry of Education Singapore (MOE2016-T3-1-004), and Institute for Health Innovation and Technology. D.L.B. acknowledges support from the Agency for Science, Technology and Research (A*STAR) under its Industry Alignment Fund–Pre-Positioning Programme (IAF-PP) grant (H17/01/a0/0C9) as part of the Wound Care Innovation for the Tropics Programme, IAF-PP grant (H17/01/a0/004), and Skin Research Institute of Singapore, Phase 2: SRIS@Novena. H.L. acknowledges support from the Wound Care Innovation for the Tropics Programme, A*STAR IAF-PP grant (H19/01/a0/0GG9), Skin Innovation grant (SIG18005), MOE AcRF Tier 1 grant (R-143-000-B79-114), and Singapore Ministry of Health’s National Medical Research Council OF-IRG (MOH-000612-00). W.L. acknowledges support from MOE AcRF Tier 1 grant (R-221-000-093-133). B.C.K.T. acknowledges support from National University of Singapore Startup Grant (NUS-2017-01) and Agency of Science Technology and Research Singapore (A18A1B0045). H. Yao acknowledges Research Scholarship from NUS Materials Science and Engineering. Y.G. acknowledges support from the EMULSION Programme H18/01/A0/017 (IAF-PP, A*STAR). S.M.P.K. acknowledges support from the National Research Foundation Singapore, under its NRF Large Equipment Grants–Grant Addendum 3: Operations of the Singapore Synchrotron Light Source (SSLS)

    Surgical site infection after gastrointestinal surgery in children : an international, multicentre, prospective cohort study

    Get PDF
    Introduction Surgical site infection (SSI) is one of the most common healthcare-associated infections (HAIs). However, there is a lack of data available about SSI in children worldwide, especially from low-income and middle-income countries. This study aimed to estimate the incidence of SSI in children and associations between SSI and morbidity across human development settings. Methods A multicentre, international, prospective, validated cohort study of children aged under 16 years undergoing clean-contaminated, contaminated or dirty gastrointestinal surgery. Any hospital in the world providing paediatric surgery was eligible to contribute data between January and July 2016. The primary outcome was the incidence of SSI by 30 days. Relationships between explanatory variables and SSI were examined using multilevel logistic regression. Countries were stratified into high development, middle development and low development groups using the United Nations Human Development Index (HDI). Results Of 1159 children across 181 hospitals in 51 countries, 523 (45 center dot 1%) children were from high HDI, 397 (34 center dot 2%) from middle HDI and 239 (20 center dot 6%) from low HDI countries. The 30-day SSI rate was 6.3% (33/523) in high HDI, 12 center dot 8% (51/397) in middle HDI and 24 center dot 7% (59/239) in low HDI countries. SSI was associated with higher incidence of 30-day mortality, intervention, organ-space infection and other HAIs, with the highest rates seen in low HDI countries. Median length of stay in patients who had an SSI was longer (7.0 days), compared with 3.0 days in patients who did not have an SSI. Use of laparoscopy was associated with significantly lower SSI rates, even after accounting for HDI. Conclusion The odds of SSI in children is nearly four times greater in low HDI compared with high HDI countries. Policies to reduce SSI should be prioritised as part of the wider global agenda.Peer reviewe

    Exploring the cost-effectiveness of high versus low perioperative fraction of inspired oxygen in the prevention of surgical site infections among abdominal surgery patients in three low- and middle-income countries

    No full text
    Background: This study assessed the potential cost-effectiveness of high (80–100%) vs low (21–35%) fraction of inspired oxygen (FiO2) at preventing surgical site infections (SSIs) after abdominal surgery in Nigeria, India, and South Africa. Methods: Decision-analytic models were constructed using best available evidence sourced from unbundled data of an ongoing pilot trial assessing the effectiveness of high FiO2, published literature, and a cost survey in Nigeria, India, and South Africa. Effectiveness was measured as percentage of SSIs at 30 days after surgery, a healthcare perspective was adopted, and costs were reported in US dollars ().Results:HighFiO2maybecosteffective(cheaperandeffective).InNigeria,theaveragecostforhighFiO2was). Results: High FiO2 may be cost-effective (cheaper and effective). In Nigeria, the average cost for high FiO2 was 216 compared with 222forlowFiO2leadingtoa 222 for low FiO2 leading to a −6 (95% confidence interval [CI]: −13to 13 to −1) difference in costs. In India, the average cost for high FiO2 was 184comparedwith184 compared with 195 for low FiO2 leading to a −11(9511 (95% CI: −15 to −6)differenceincosts.InSouthAfrica,theaveragecostforhighFiO2was6) difference in costs. In South Africa, the average cost for high FiO2 was 1164 compared with 1257forlowFiO2leadingtoa 1257 for low FiO2 leading to a −93 (95% CI: −132to 132 to −65) difference in costs. The high FiO2 arm had few SSIs, 7.33% compared with 8.38% for low FiO2, leading to a −1.05 (95% CI: −1.14 to −0.90) percentage point reduction in SSIs. Conclusion: High FiO2 could be cost-effective at preventing SSIs in the three countries but further data from large clinical trials are required to confirm this
    corecore