102 research outputs found
Correlation of physical properties with molecular structure for some dicyclic hydrocarbons having high thermal-energy release per unit volume -- 2-alkylbiphenyl and the two isomeric 2-alkylbicyclohexyl series
Three homologous series of related dicyclic hydrocarbons are presented for comparison on the basis of their physical properties, which include net heat of combustion, density, melting point, boiling point, and kinematic viscosity. The three series investigated include the 2-n-alkylbiphenyl, 2-n-alkylbicyclohexyl (high boiling), and 2-n-alkylbiphenyls (low boiling) series through c sub 16, in addition to three branched-chain (isopropyl, sec-butyl, and isobutyl) 2-alkylbiphenyls and their corresponding 2-alkylbicyclohexyls. The physical properties of the low-boiling and high-boiling isomers of 2-sec-butylbicyclohexyl and 2-isobutylbicyclohexyl are reported herein for the first time
Study of the physical properties of petrolatum-stabilized magnesium-hydrocarbon slurry fuels
Magnesium-hydrocarbon slurries containing a moderate proportion of petrolatum have physical properties such that they offer promise as experimental aircraft fuels. The settling of the magnesium is greatly retarded by the petrolatum, and the slurries can easily be remixed to their original condition after storage. Successive batches which have closely similar properties can be prepared readily. The apparent viscosity of these slurries increased rapidly with increasing magnesium concentration, with increasing petrolatum concentration, and with decreasing temperature. As the apparent viscosity increased, the extent of settling and the ease of remixing both decreased. Although no quantitative correlation was found between the properties of the slurry and those of the petrolatum, and no one petrolatum gave slurries which were best in all respects, one of the five petrolatum used was judged to be superior to the others
Multi-Grid Monte Carlo via Embedding. II. Two-Dimensional Principal Chiral Model
We carry out a high-precision simulation of the two-dimensional
principal chiral model at correlation lengths up to ,
using a multi-grid Monte Carlo (MGMC) algorithm and approximately one year of
Cray C-90 CPU time. We extrapolate the finite-volume Monte Carlo data to
infinite volume using finite-size-scaling theory, and we discuss carefully the
systematic and statistical errors in this extrapolation. We then compare the
extrapolated data to the renormalization-group predictions. The deviation from
asymptotic scaling, which is at , decreases to
at . We also analyze the dynamic critical
behavior of the MGMC algorithm using lattices up to , finding
the dynamic critical exponent
(subjective 68% confidence interval). Thus, for this asymptotically free model,
critical slowing-down is greatly reduced compared to local algorithms, but not
completely eliminated.Comment: self-unpacking archive including .tex, .sty and .ps files; 126 pages
including all figure
Genetic Dissection of the Function of Hindbrain Axonal Commissures
The Robo3 receptor controls midline crossing by axons. Deleting Robo3 in specific commissural neurons with a conditional knockout reveals their contribution to sensory and motor integration, and models human neurological conditions
Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): an open-label, platform-adaptive randomised controlled trial
Background:
The safety, effectiveness, and cost-effectiveness of molnupiravir, an oral antiviral medication for SARS-CoV-2, has not been established in vaccinated patients in the community at increased risk of morbidity and mortality from COVID-19. We aimed to establish whether the addition of molnupiravir to usual care reduced hospital admissions and deaths associated with COVID-19 in this population.
Methods:
PANORAMIC was a UK-based, national, multicentre, open-label, multigroup, prospective, platform adaptive randomised controlled trial. Eligible participants were aged 50 years or older—or aged 18 years or older with relevant comorbidities—and had been unwell with confirmed COVID-19 for 5 days or fewer in the community. Participants were randomly assigned (1:1) to receive 800 mg molnupiravir twice daily for 5 days plus usual care or usual care only. A secure, web-based system (Spinnaker) was used for randomisation, which was stratified by age (<50 years vs ≥50 years) and vaccination status (yes vs no). COVID-19 outcomes were tracked via a self-completed online daily diary for 28 days after randomisation. The primary outcome was all-cause hospitalisation or death within 28 days of randomisation, which was analysed using Bayesian models in all eligible participants who were randomly assigned. This trial is registered with ISRCTN, number 30448031.
Findings:
Between Dec 8, 2021, and April 27, 2022, 26 411 participants were randomly assigned, 12 821 to molnupiravir plus usual care, 12 962 to usual care alone, and 628 to other treatment groups (which will be reported separately). 12 529 participants from the molnupiravir plus usual care group, and 12 525 from the usual care group were included in the primary analysis population. The mean age of the population was 56·6 years (SD 12·6), and 24 290 (94%) of 25 708 participants had had at least three doses of a SARS-CoV-2 vaccine. Hospitalisations or deaths were recorded in 105 (1%) of 12 529 participants in the molnupiravir plus usual care group versus 98 (1%) of 12 525 in the usual care group (adjusted odds ratio 1·06 [95% Bayesian credible interval 0·81–1·41]; probability of superiority 0·33). There was no evidence of treatment interaction between subgroups. Serious adverse events were recorded for 50 (0·4%) of 12 774 participants in the molnupiravir plus usual care group and for 45 (0·3%) of 12 934 in the usual care group. None of these events were judged to be related to molnupiravir.
Interpretation:
Molnupiravir did not reduce the frequency of COVID-19-associated hospitalisations or death among high-risk vaccinated adults in the community
- …