179 research outputs found

    Self-consistent Green's function method for nuclei and nuclear matter

    Get PDF
    Recent results obtained by applying the method of self-consistent Green's functions to nuclei and nuclear matter are reviewed. Particular attention is given to the description of experimental data obtained from the (e,e'p) and (e,e'2N) reactions that determine one and two-nucleon removal probabilities in nuclei since the corresponding amplitudes are directly related to the imaginary parts of the single-particle and two-particle propagators. For this reason and the fact that these amplitudes can now be calculated with the inclusion of all the relevant physical processes, it is useful to explore the efficacy of the method of self-consistent Green's functions in describing these experimental data. Results for both finite nuclei and nuclear matter are discussed with particular emphasis on clarifying the role of short-range correlations in determining various experimental quantities. The important role of long-range correlations in determining the structure of low-energy correlations is also documented. For a complete understanding of nuclear phenomena it is therefore essential to include both types of physical correlations. We demonstrate that recent experimental results for these reactions combined with the reported theoretical calculations yield a very clear understanding of the properties of {\em all} protons in the nucleus. We propose that this knowledge of the properties of constituent fermions in a correlated many-body system is a unique feature of nuclear physics.Comment: 110 pages, accepted for publication on Prog. Part. Nucl. Phy

    Automated DNA Sequence-Based Early Warning System for the Detection of Methicillin-Resistant Staphylococcus aureus Outbreaks

    Get PDF
    BACKGROUND: The detection of methicillin-resistant Staphylococcus aureus (MRSA) usually requires the implementation of often rigorous infection-control measures. Prompt identification of an MRSA epidemic is crucial for the control of an outbreak. In this study we evaluated various early warning algorithms for the detection of an MRSA cluster. METHODS AND FINDINGS: Between 1998 and 2003, 557 non-replicate MRSA strains were collected from staff and patients admitted to a German tertiary-care university hospital. The repeat region of the S. aureus protein A (spa) gene in each of these strains was sequenced. Using epidemiological and typing information for the period 1998–2002 as reference data, clusters in 2003 were determined by temporal-scan test statistics. Various early warning algorithms (frequency, clonal, and infection control professionals [ICP] alerts) were tested in a prospective analysis for the year 2003. In addition, a newly implemented automated clonal alert system of the Ridom StaphType software was evaluated. A total of 549 of 557 MRSA were typeable using spa sequencing. When analyzed using scan test statistics, 42 out of 175 MRSA in 2003 formed 13 significant clusters (p < 0.05). These clusters were used as the “gold standard” to evaluate the various algorithms. Clonal alerts (spa typing and epidemiological data) were 100% sensitive and 95.2% specific. Frequency (epidemiological data only) and ICP alerts were 100% and 62.1% sensitive and 47.2% and 97.3% specific, respectively. The difference in specificity between clonal and ICP alerts was not significant. Both methods exhibited a positive predictive value above 80%. CONCLUSIONS: Rapid MRSA outbreak detection, based on epidemiological and spa typing data, is a suitable alternative for classical approaches and can assist in the identification of potential sources of infection

    Genomic structure and insertion sites of Helicobacter pylori prophages from various geographical origins

    Get PDF
    We present the full genomic sequences, insertion sites and phylogenetic analysis of 28 prophages found in H. pylori isolates from patients of distinct disease types, ranging from gastritis to gastric cancer, and geographic origins, covering most continents. The gentic diversity of H pylori is known to be influenced by these genomic elements including prophages who’s geneomes range from 22.6 to 33.0 Kbp. There was a high conservation of integration site shared in over 50% of cases with greater than 40% or prophage genomes harbouring insertion sequences (IS). Furthermore prophage genomes present a robust phylogeographic pattern, revealing four distinct clusters: one African, one Asian and two European prophage populations. There was evidence of recombination within the genome of some prophages, which resulted in genome mosaics composed by different populations, which may yield additional H. pylori phenotypes

    Estimation of tail risk based on extreme expectiles

    Get PDF
    We use tail expectiles to estimate alternative measures to the Value at Risk (VaR) and Marginal Expected Shortfall (MES), two instruments of risk protection of utmost importance in actuarial science and statistical _nance. The concept of expectiles is a least squares analogue of quantiles. Both are M-quantiles as the minimizers of an asymmetric convex loss function, but expectiles are the only M-quantiles that are coherent risk measures. Moreover, expectiles de_ne the only coherent risk measure that is also elicitable. The estimation of expectiles has not, however, received any attention yet from the perspective of extreme values. Two estimation methods are proposed here, either making use of quantiles or relying directly on least asymmetrically weighted squares. A main tool is to _rst estimate large values of expectile-based VaR and MES located within the range of the data, and then to extrapolate the obtained estimates to the very far tails. We establish the limit distributions of both of the resulting intermediate and extreme estimators. We show via a detailed simulation study the good performance of the procedures, and present concrete applications to medical insurance data and three large US investment banks

    The Bifidobacterium dentium Bd1 Genome Sequence Reflects Its Genetic Adaptation to the Human Oral Cavity

    Get PDF
    Bifidobacteria, one of the relatively dominant components of the human intestinal microbiota, are considered one of the key groups of beneficial intestinal bacteria (probiotic bacteria). However, in addition to health-promoting taxa, the genus Bifidobacterium also includes Bifidobacterium dentium, an opportunistic cariogenic pathogen. The genetic basis for the ability of B. dentium to survive in the oral cavity and contribute to caries development is not understood. The genome of B. dentium Bd1, a strain isolated from dental caries, was sequenced to completion to uncover a single circular 2,636,368 base pair chromosome with 2,143 predicted open reading frames. Annotation of the genome sequence revealed multiple ways in which B. dentium has adapted to the oral environment through specialized nutrient acquisition, defences against antimicrobials, and gene products that increase fitness and competitiveness within the oral niche. B. dentium Bd1 was shown to metabolize a wide variety of carbohydrates, consistent with genome-based predictions, while colonization and persistence factors implicated in tissue adhesion, acid tolerance, and the metabolism of human saliva-derived compounds were also identified. Global transcriptome analysis demonstrated that many of the genes encoding these predicted traits are highly expressed under relevant physiological conditions. This is the first report to identify, through various genomic approaches, specific genetic adaptations of a Bifidobacterium taxon, Bifidobacterium dentium Bd1, to a lifestyle as a cariogenic microorganism in the oral cavity. In silico analysis and comparative genomic hybridization experiments clearly reveal a high level of genome conservation among various B. dentium strains. The data indicate that the genome of this opportunistic cariogen has evolved through a very limited number of horizontal gene acquisition events, highlighting the narrow boundaries that separate commensals from opportunistic pathogens
    corecore