797 research outputs found

    CASTOR: Centauro and Strange Object Research in nucleus-nucleus collisions at LHC

    Get PDF
    We describe the CASTOR detector designed to probe the very forward, baryon-rich rapidity region in nucleus-nucleus collisions at the LHC. We present a phenomenological model describing the formation of a QGP fireball in a high baryochemical potential environment, and its subsequent decay into baryons and strangelets. The model explains Centauros and the long-penetrating component and makes predictions for the LHC. Simulations of Centauro-type events were done. To study the response of the apparatus to new effects different exotic species (DCC, Centauros, strangelets etc.) were passed through the deep calorimeter. The energy deposition pattern in the calorimeter appears to be a new clear signature of the QGP.Comment: Talk given by E. Gladysz-Dziadus for the CASTOR group, Intern. Workshop on Nuclear Theory, 10-15 June, 2002, Bulgaria, Rila Mountains, 15 pages, 14 figure

    System-size dependence of strangeness production in nucleus-nucleus collisions at sqrt{s_{NN}}=17.3 GeV

    Get PDF
    Emission of pi, K, phi and Lambda was measured in near-central C+C and Si+Si collisions at 158 AGeV beam energy. Together with earlier data for p+p, S+S and Pb+Pb, the system-size dependence of relative strangeness production in nucleus-nucleus collisions is obtained. Its fast rise and the saturation observed at about 60 participating nucleons can be understood as onset of the formation of coherent partonic subsystems of increasing size.Comment: Phys.Rev.Lett in print; version2: changes made according to the request of the referee

    Report from NA49

    Full text link
    The most recent data of NA49 on hadron production in nuclear collisions at CERN SPS energies are presented. Anomalies in the energy dependence of pion and kaon production in central Pb+Pb collisions are observed. They suggest that the onset of deconfinement is located at about 30 AGeV. Large multiplicity and transverse momentum fluctuations are measured for collisions of intermediate mass systems at 158 AGeV. The need for a new experimental programme at the CERN SPS is underlined.Comment: invited talk presented at Quark Matter 2004, 10 page

    Rapidity and transverse momentum dependence of pion-pion Bose-Einstein correlations measured at 20, 30, 40, 80, and 158 AGeV beam energy

    Full text link
    Preliminary results on pion-pion Bose-Einstein correlations in central Pb+Pb collisions measured by the NA49 experiment are presented. Rapidity as well as transverse momentum dependence of the HBT-radii are shown for collisions at 20, 30, 40, 80, and 158 AGeV beam energy. Including results from AGS and RHIC experiments only a weak energy dependence of the radii is observed. Based on hydrodynamical models parameters like lifetime and geometrical radius of the source are derived from the dependence of the radii on transverse momentum.Comment: 5 pages, 4 figures, contribution to the Quark Matter conference, Oakland, USA, Jan 11-17, 200

    Strange Quark Matter and Compact Stars

    Full text link
    Astrophysicists distinguish between three different types of compact stars. These are white dwarfs, neutron stars, and black holes. The former contain matter in one of the densest forms found in the Universe which, together with the unprecedented progress in observational astronomy, make such stars superb astrophysical laboratories for a broad range of most striking physical phenomena. These range from nuclear processes on the stellar surface to processes in electron degenerate matter at subnuclear densities to boson condensates and the existence of new states of baryonic matter--like color superconducting quark matter--at supernuclear densities. More than that, according to the strange matter hypothesis strange quark matter could be more stable than nuclear matter, in which case neutron stars should be largely composed of pure quark matter possibly enveloped in thin nuclear crusts. Another remarkable implication of the hypothesis is the possible existence of a new class of white dwarfs. This article aims at giving an overview of all these striking physical possibilities, with an emphasis on the astrophysical phenomenology of strange quark matter. Possible observational signatures associated with the theoretically proposed states of matter inside compact stars are discussed as well. They will provide most valuable information about the phase diagram of superdense nuclear matter at high baryon number density but low temperature, which is not accessible to relativistic heavy ion collision experiments.Comment: 58 figures, to appear in "Progress in Particle and Nuclear Physics"; References added for sections 1,2,3,5; Equation (116) corrected; Figs. 1 and 58 update

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161
    corecore