2,390 research outputs found

    Monolithic Pixel Sensors in Deep-Submicron SOI Technology

    Full text link
    Monolithic pixel sensors for charged particle detection and imaging applications have been designed and fabricated using commercially available, deep-submicron Silicon-On-Insulator (SOI) processes, which insulate a thin layer of integrated full CMOS electronics from a high-resistivity substrate by means of a buried oxide. The substrate is contacted from the electronics layer through vias etched in the buried oxide, allowing pixel implanting and reverse biasing. This paper summarizes the performances achieved with a first prototype manufactured in the OKI 0.15 micrometer FD-SOI process, featuring analog and digital pixels on a 10 micrometer pitch. The design and preliminary results on the analog section of a second prototype manufactured in the OKI 0.20 micrometer FD-SOI process are briefly discussed.Comment: Proceedings of the PIXEL 2008 International Workshop, FNAL, Batavia, IL, 23-26 September 2008. Submitted to JINST - Journal of Instrumentatio

    LNL irradiation facilities for radiation damage studies on electronic devices

    Get PDF
    In this paper we will review the wide range of irradiation facilities installed at the INFN Legnaro National Laboratories and routinely used for radiation damage studies on silicon detectors, electronic components and systems. The SIRAD irradiation facility, dedicated to Single Event Effect (SEE) and bulk damage studies, is installed at the 14MV Tandem XTU accelerator and can deliver ion beams from H up to Au in the energy range from 28MeV to 300 MeV. An Ion Electron Emission Microscope, also installed at SIRAD, allows SEE testing with micrometric sensitivity. For total dose tests, two facilities are presently available: an X-rays source and a 60Co γ-ray source. The 7MV Van de Graaff CN accelerator provides 1H beams in the energy range 2–7MeV and currents up to few μA for both total dose and bulk damage studies. At this facility, very high dose rates (up to ∼100 krad/s (SiO2)) can be achieved. Finally, also neutron beams are available, produced at the CN accelerator, by the reaction d + Be ⇒ n+B

    Timbre brownfield prioritization tool to support effective brownfield regeneration.

    Get PDF
    In the last decade, the regeneration of derelict or underused sites, fully or partly located in urban areas (or so called “brownfields”), has become more common, since free developable land (or so called “greenfields”) has more and more become a scare and, hence, more expensive resource, especially in densely populated areas. Although the regeneration of brownfield sites can offer development potentials, the complexity of these sites requires considerable efforts to successfully complete their revitalization projects and the proper selection of promising sites is a pre-requisite to efficiently allocate the limited financial resources. The identification and analysis of success factors for brownfield sites regeneration can support investors and decision makers in selecting those sites which are the most advantageous for successful regeneration. The objective of this paper is to present the Timbre Brownfield Prioritization Tool (TBPT), developed as a web-based solution to assist stakeholders responsible for wider territories or clusters of brownfield sites (portfolios) to identify which brownfield sites should be preferably considered for redevelopment or further investigation. The prioritization approach is based on a set of success factors properly identified through a systematic stakeholder engagement procedure. Within the TBPT these success factors are integrated by means of a Multi Criteria Decision Analysis (MCDA) methodology, which includes stakeholders' requalification objectives and perspectives related to the brownfield regeneration process and takes into account the three pillars of sustainability (economic, social and environmental dimensions). The tool has been applied to the South Moravia case study (Czech Republic), considering two different requalification objectives identified by local stakeholders, namely the selection of suitable locations for the development of a shopping centre and a solar power plant, respectively. The application of the TBPT to the case study showed that it is flexible and easy to adapt to different local contexts, allowing the assessors to introduce locally relevant parameters identified according to their expertise and considering the availability of local data

    Total dose effects on deep-submicron SOI technology for Monolithic Pixel Sensor development

    Get PDF
    We developed and characterized Monolithic pixel detectors in deep-submicron Fully Depleted (FD) Silicon On Insulator (SOI) technology. This paper presents the first studies of total dose effects from ionizing radiation performed on single transistor test structures. This work shows how the substrate bias condition during irradiation heavily affects the resulting radiation damage

    Assessing uncertainty of hydrological and ecological parameters originating from the application of an ensemble of ten global-regional climate model projections in a coastal ecosystem of the lagoon of Venice, Italy

    Get PDF
    With increasing evidences of climate change affecting coastal waters, there is a strong need to understand future climate conditions and assess the potential responses of delicate coastal ecosystems. Results of climate change studies based on only one GCM-RCM combination should be interpreted with caution as results are highly dependent on the assumptions of the selected combination. In this study we examined the uncertainty in the hydrological and ecological parameters of the Zero river basin (ZRB) – Palude di Cona (PDC) coastal aquatic ecosystem generated by the adoption of an ensemble of climate projections from ten different combinations of General Circulation Model (GCM) – Regional Climate Model (RCM) under two emission scenarios (RCP4.5 and RCP8.5) implemented in the hydrological model (SWAT) and the ecological model (AQUATOX). The baseline period of 1983–2012 was used to identify climate change variations in two future periods: mid-century (2041–2070) and late-century (2071–2100) periods. SWAT outputs from the ensemble indicate a summer reduction in inorganic nitrogen loadings of 1–22% and a winter increase of 1–19%. Inorganic phosphorus loadings indicate a yearly increase of 32–61%. AQUATOX outputs from the ensemble show major changes in the summer period, with an increase in Chl-a concentration of 9–56%, a decrease in diatoms of 74–98% and an increase in cyanobacteria of 421–3590%. Obtained results confirm that the use of multiple GCM-RCM projections can provide a more robust assessment of climate change impacts on the hydrology and ecology of coastal waters, but at the same time highlight the large uncertainty of climate change-related impact studies, which can affect the decision-making processes regarding the management and preservation of sensitive aquatic ecosystems such as those in coastal areas. © 2019 Elsevier B.V

    Use of bivalirudin for heparin-induced thrombocytopaenia after thrombolysis in massive pulmonary embolism: a case report

    Get PDF
    A 68-year-old man was referred to the emergency department 6 h after onset of sudden acute dyspnoea. Immediate ECG showed sinus tachycardia with the typical S1-Q3-T3 pattern and incomplete right bundle branch block. The echocardiogram showed the presence of mobile thrombus in the right atrium, a distended right ventricle with free wall hypokinesia and displacement of the interventricular septum towards the left ventricle. Lung spiral computed tomography (CT) showed bilateral pulmonary involvement and confirmed the picture of a thrombotic system in the right atrium and caval vein. Thrombolytic treatment with recombinant tissue plasminogen activator (rt-PA) and heparin (alteplase 10 mg bolus, then 90 mg over 2 h) was administered. Six hours after thrombolysis bleeding gums and significant reduction in platelet count (around 50,000) were observed. Heparin was discontinued and bivalirudin (0.1 mg/kg bolus and 1.75 mg/kg per h infusion) plus warfarin was initiated and continued for 5 days until the international normalised ratio (INR) was within the therapeutic range (2.0–3.0) for 2 consecutive days, with concomitant platelet count normalisation. Lung spiral and lower abdominal CT before discharge did not show the presence of clots in the pulmonary arteries of the right and left lung. This case suggests that bivalirudin could offer promise for use in patients with heparin-induced thrombocytopaenia (HIT) after thrombolysis for massive pulmonary embolism

    Occupational risk of nano-biomaterials: Assessment of nano-enabled magnetite contrast agent using the BIORIMA Decision Support System

    Get PDF
    The assessment of the safety of nano-biomedical products for patients is an essential prerequisite for their market authorization. However, it is also required to ensure the safety of the workers who may be unintentionally exposed to the nano-biomaterials (NBMs) in these medical applications during their synthesis, formulation into products and end-of-life processing and also of the medical professionals (e.g., nurses, doctors, dentists) using the products for treating patients. There is only a handful of workplace risk assessments focussing on NBMs used in medical applications. Our goal is to contribute to increasing the knowledge in this area by assessing the occupational risks of magnetite (Fe3O4) nanoparticles coated with PLGA-b-PEG-COOH used as contrast agent in magnetic resonance imaging (MRI) by applying the software-based Decision Support System (DSS) which was developed in the EU H2020 project BIORIMA. The occupational risk assessment was performed according to regulatory requirements and using state-of-the-art models for hazard and exposure assessment, which are part of the DSS. Exposure scenarios for each life cycle stage were developed using data from literature, inputs from partnering industries and results of a questionnaire distributed to healthcare professionals, i.e., physicians, nurses, technicians working with contrast agents for MRI. Exposure concentrations were obtained either from predictive exposure models or monitoring campaigns designed specifically for this study. Derived No-Effect Levels (DNELs) were calculated by means of the APROBA tool starting from in vivo hazard data from literature. The exposure estimates/measurements and the DNELs were used to perform probabilistic risk characterisation for the formulated exposure scenarios, including uncertainty analysis. The obtained results revealed negligible risks for workers along the life cycle of magnetite NBMs used as contrast agent for the diagnosis of tumour cells in all exposure scenarios except in one when risk is considered acceptable after the adoption of specific risk management measures. The study also demonstrated the added value of using the BIORIMA DSS for quantification and communication of occupational risks of nano-biomedical applications and the associated uncertainties

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    X-ray emission from the Sombrero galaxy: discrete sources

    Get PDF
    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30 kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray binaries (LMXBs). We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-low indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC LF at fainter luminosities down to 1E35 erg/s. The derived index rules out a faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore