1,160 research outputs found

    Thermodynamics of Two Dimensional Black Holes

    Full text link
    Thermodynamic relations for a class of 2D black holes are obtained corresponding to observations made from finite spatial distances. We also study the thermodynamics of the charged version of the Jackiw-Teitelboim black holes found recently by Lowe and Strominger. Our results corroborate, in appropriate limits, to those obtained previously by other methods. We also analyze the stability of these black holes thermodynamically.Comment: 18 pages (One uncoded postscript file for figure appended), IP/BBSR/94-5

    Gravitational lensing in the Kerr-Randers optical geometry

    Full text link
    A new geometric method to determine the deflection of light in the equatorial plane of the Kerr solution is presented, whose optical geometry is a surface with a Finsler metric of Randers type. Applying the Gauss-Bonnet theorem to a suitable osculating Riemannian manifold, adapted from a construction by Naz\i m, it is shown explicitly how the two leading terms of the asymptotic deflection angle of gravitational lensing can be found in this way.Comment: 7 pages, 1 figure. Accepted by Gen. Rel. Grav. Version 2: change of notation in sec.

    Extensively Drug-Resistant Tuberculosis (XDR-TB) - A Potential Threat in Ireland

    Get PDF
    We describe a case of a 25 year old female from Lithuania who presented with a productive cough. Chest radiograph demonstrated an infiltrate in the left upper lobe and a cavitating lesion in the right middle lobe. Sensitivity testing of her sputum led to a diagnosis of extensively drug-resistant tuberculosis (XDR-TB). This is the first case in Ireland and highlights the need for physicians to be aware of the possibility of XDR-TB. Moreover it underlines the need for improvement in service provision in terms of a TB reference laboratory and TB clinics

    Fast Scramblers, Horizons and Expander Graphs

    Full text link
    We propose that local quantum systems defined on expander graphs provide a simple microscopic model for thermalization on quantum horizons. Such systems are automatically fast scramblers and are motivated from the membrane paradigm by a conformal transformation to the so-called optical metric.Comment: 22 pages, 2 figures. Added further discussion in section 3. Added reference

    Chemical stability study of vitamins thiamine, riboflavin, pyridoxine and ascorbic acid in parenteral nutrition for neonatal use

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this work was to study the vitamins B<sub>1</sub>, B<sub>2</sub>, B<sub>6 </sub>and C stability in a pediatric formulation containing high amounts of calcium in the presence of organic phosphate, amino acids, glucose, sodium chloride, magnesium sulfate, pediatric vitamins and trace elements under different conditions using developed and validated analytical methods.</p> <p>Methods</p> <p>The study was carried out during 72 h with formulations packaged in recommended storage temperature (4°C) and 25°C, with and without photoprotection.</p> <p>Results</p> <p>The results showed that the methodologies used for assessing the chemical stability of vitamins B<sub>1</sub>, B<sub>2</sub>, B<sub>6 </sub>and C in the formulation were selective, linear, precise and accurate. The vitamins could be considered stable in the formulation during the three days of study if stored at 4°C. When stored at 25°C vitamin C presented instability after 48 h.</p> <p>Conclusion</p> <p>The pediatric formulation containing high amount of calcium in the presence of organic phosphate, amino acids, glucose, sodium chloride, magnesium sulphate, pediatric vitamins and trace elements packaged in bag-type trilaminate presented a shelf life of the 72 h, when maintained under refrigeration, between 2°C and 8°C. This shelf life was measured considering the vitamins studied. Further studies are needed including all the vitamins present in this formulation.</p

    A Closed-Form Solution of the Multi-Period Portfolio Choice Problem for a Quadratic Utility Function

    Full text link
    In the present paper, we derive a closed-form solution of the multi-period portfolio choice problem for a quadratic utility function with and without a riskless asset. All results are derived under weak conditions on the asset returns. No assumption on the correlation structure between different time points is needed and no assumption on the distribution is imposed. All expressions are presented in terms of the conditional mean vectors and the conditional covariance matrices. If the multivariate process of the asset returns is independent it is shown that in the case without a riskless asset the solution is presented as a sequence of optimal portfolio weights obtained by solving the single-period Markowitz optimization problem. The process dynamics are included only in the shape parameter of the utility function. If a riskless asset is present then the multi-period optimal portfolio weights are proportional to the single-period solutions multiplied by time-varying constants which are depending on the process dynamics. Remarkably, in the case of a portfolio selection with the tangency portfolio the multi-period solution coincides with the sequence of the simple-period solutions. Finally, we compare the suggested strategies with existing multi-period portfolio allocation methods for real data.Comment: 38 pages, 9 figures, 3 tables, changes: VAR(1)-CCC-GARCH(1,1) process dynamics and the analysis of increasing horizon are included in the simulation study, under revision in Annals of Operations Researc

    How does gender influence the recognition of cardiovascular risk and adherence to self-care recommendations? : a study in polish primary care

    Get PDF
    Background: Studies have shown a correlation between gender and an ability to change lifestyle to reduce the risk of disease. However, the results of these studies are ambiguous, especially where a healthy lifestyle is concerned. Additionally, health behaviors are strongly modified by culture and the environment. Psychological factors also substantially affect engagement with disease-related lifestyle interventions. This study aimed to examine whether there are differences between men and women in the frequency of health care behavior for the purpose of reducing cardiovascular risk (CVR), as well as cognitive appraisal of this type of risk. We also aimed to identify the psychological predictors of engaging in recommended behavior for reducing the risk of cardiovascular disease after providing information about this risk in men and women. Methods: A total of 134 consecutive eligible patients in a family practice entered a longitudinal study. At initial consultation, the individual’s CVR and associated health burden was examined, and preventive measures were recommended by the physician. Self-care behavior, cognitive appraisal of risk, and coping styles were then assessed using psychological questionnaires. Six months after the initial data collection, the frequency of subjects’ self-care behavior was examined. Results: We found an increase in health care behavior after providing information regarding the rate of CVR in both sexes; this increase was greater for women than for men. Women followed self-care guidelines more often than men, particularly for preventive measures and dietary advice. Women were more inclined to recognize their CVR as a challenge. Coping style, cognitive appraisal, age, level of health behaviors at baseline and CVR values accounted for 48% of the variance in adherence to self-care guidelines in women and it was 52% in men. In women, total risk of CVD values were most important, while in men, cognitive appraisal of harm/loss was most important. Conclusions: Different predictors of acquisition of health behavior are encountered in men and women. Our results suggest that gender-adjusted motivation models influencing the recognition process need to be considered to optimize compliance in patients with CVR

    Quantum Fields and Extended Objects in Space-Times with Constant Curvature Spatial Section

    Full text link
    The heat-kernel expansion and ζ\zeta-regularization techniques for quantum field theory and extended objects on curved space-times are reviewed. In particular, ultrastatic space-times with spatial section consisting in manifold with constant curvature are discussed in detail. Several mathematical results, relevant to physical applications are presented, including exact solutions of the heat-kernel equation, a simple exposition of hyperbolic geometry and an elementary derivation of the Selberg trace formula. With regards to the physical applications, the vacuum energy for scalar fields, the one-loop renormalization of a self-interacting scalar field theory on a hyperbolic space-time, with a discussion on the topological symmetry breaking, the finite temperature effects and the Bose-Einstein condensation, are considered. Some attempts to generalize the results to extended objects are also presented, including some remarks on path integral quantization, asymptotic properties of extended objects and a novel representation for the one-loop (super)string free energy.Comment: Latex file, 122 page
    corecore