34 research outputs found

    European bone mineral density loci are also associated with BMD in East-Asian populations

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldMost genome-wide association (GWA) studies have focused on populations of European ancestry with limited assessment of the influence of the sequence variants on populations of other ethnicities. To determine whether markers that we have recently shown to associate with Bone Mineral Density (BMD) in Europeans also associate with BMD in East-Asians we analysed 50 markers from 23 genomic loci in samples from Korea (n = 1,397) and two Chinese Hong Kong sample sets (n = 3,869 and n = 785). Through this effort we identified fourteen loci that associated with BMD in East-Asian samples using a false discovery rate (FDR) of 0.05; 1p36 (ZBTB40, P = 4.3×10(-9)), 1p31 (GPR177, P = 0.00012), 3p22 (CTNNB1, P = 0.00013), 4q22 (MEPE, P = 0.0026), 5q14 (MEF2C, P = 1.3×10(-5)), 6q25 (ESR1, P = 0.0011), 7p14 (STARD3NL, P = 0.00025), 7q21 (FLJ42280, P = 0.00017), 8q24 (TNFRSF11B, P = 3.4×10(-5)), 11p15 (SOX6, P = 0.00033), 11q13 (LRP5, P = 0.0033), 13q14 (TNFSF11, P = 7.5×10(-5)), 16q24 (FOXL1, P = 0.0010) and 17q21 (SOST, P = 0.015). Our study marks an early effort towards the challenge of cataloguing bone density variants shared by many ethnicities by testing BMD variants that have been established in Europeans, in East-Asians

    Association between Bone Mineral Density and LDL Receptor-Related Protein 5 Gene Polymorphisms in Young Korean Men

    Get PDF
    Recently, It has been reported that the LDL receptor-related protein 5 (LRP5) regulates bone formation, and that mutations of the gene cause osteoporosis-pseudoglioma syndrome or high bone mass phenotypes. However, the mutations cannot explain a genetic trait for osteoporosis in the general population because of their rarity. From 219 Korean men aged 20-34 yr, we looked for six known polymorphisms causing amino acid changes in the LRP5 coding region, and investigated their association with bone mineral density (BMD) at the following anatomical sites: lumbar spine (L2-L4) and the left proximal femur (femoral neck, Ward's triangle, trochanter and shaft). We found that the Q89R polymorphism was significantly associated with BMD at the femoral neck and Ward's triangle (p=0.004 and <0.001, respectively). However, after adjusting for age, weight and height, a statistically significant association only occurred at the Ward's triangle (p=0.043), and a marginal association was observed at the femoral neck (p=0.098). No A400V, V667M, R1036Q and A1525V polymorphisms were found, and no statistically significant association was found between the A1330V polymorphism and BMD at any sites. Although we failed to demonstrate a clear association between the LRP5 polymorphism and peak bone mass in young men, the present study suggests that larger-scale studies on the Q89R polymorphism need to be performed

    Single nucleotide polymorphisms in bone turnover-related genes in Koreans: ethnic differences in linkage disequilibrium and haplotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoporosis is defined as the loss of bone mineral density that leads to bone fragility with aging. Population-based case-control studies have identified polymorphisms in many candidate genes that have been associated with bone mass maintenance or osteoporotic fracture. To investigate single nucleotide polymorphisms (SNPs) that are associated with osteoporosis, we examined the genetic variation among Koreans by analyzing 81 genes according to their function in bone formation and resorption during bone remodeling.</p> <p>Methods</p> <p>We resequenced all the exons, splice junctions and promoter regions of candidate osteoporosis genes using 24 unrelated Korean individuals. Using the common SNPs from our study and the HapMap database, a statistical analysis of deviation in heterozygosity depicted.</p> <p>Results</p> <p>We identified 942 variants, including 888 SNPs, 43 insertion/deletion polymorphisms, and 11 microsatellite markers. Of the SNPs, 557 (63%) had been previously identified and 331 (37%) were newly discovered in the Korean population. When compared SNPs in the Korean population with those in HapMap database, 1% (or less) of SNPs in the Japanese and Chinese subpopulations and 20% of those in Caucasian and African subpopulations were significantly differentiated from the Hardy-Weinberg expectations. In addition, an analysis of the genetic diversity showed that there were no significant differences among Korean, Han Chinese and Japanese populations, but African and Caucasian populations were significantly differentiated in selected genes. Nevertheless, in the detailed analysis of genetic properties, the LD and Haplotype block patterns among the five sub-populations were substantially different from one another.</p> <p>Conclusion</p> <p>Through the resequencing of 81 osteoporosis candidate genes, 118 unknown SNPs with a minor allele frequency (MAF) > 0.05 were discovered in the Korean population. In addition, using the common SNPs between our study and HapMap, an analysis of genetic diversity and deviation in heterozygosity was performed and the polymorphisms of the above genes among the five populations were substantially differentiated from one another. Further studies of osteoporosis could utilize the polymorphisms identified in our data since they may have important implications for the selection of highly informative SNPs for future association studies.</p

    Comparison of Monthly Ibandronate Versus Weekly Risedronate in Preference, Convenience, and Bone Turnover Markers in Korean Postmenopausal Osteoporotic Women

    Get PDF
    Patient preferences, convenience, and bone turnover markers were evaluated for the monthly ibandronate over the weekly risedronate regimen in Korean postmenopausal osteoporotic women. This was a 6-month, prospective, randomized, open-label, multicenter study with a two-period and two-sequence crossover treatment design. After a 30-day screening period, eligible participants with postmenopausal osteoporosis were randomized to receive either monthly oral ibandronate 150 mg for 3 months followed by weekly oral risedronate 35 mg for 12 weeks (sequence A) or the same regimen in reverse order (sequence B). Patient preference and convenience were evaluated by questionnaire. The changes in serum C-telopeptide after 3 months of treatment were analyzed. A total of 365 patients were enrolled in this study (sequence A 182, sequence B 183). Of patients expressing a preference (83.4%), 74.8% preferred the monthly ibandronate regimen over the weekly regimen (25.2%). More women stated that the monthly ibandronate regimen was more convenient (84.2%) than the weekly regimen (15.8%). There was no significant difference in the change in bone turnover marker between the two treatments. The two regimens were similarly tolerable. There were fewer adverse events in the monthly ibandronate group compared to the weekly risedronate group in terms of gastrointestinal side effects (nausea and abdominal distension). This study revealed a strong preference and convenience for monthly ibandronate over weekly risedronate in Korean postmenopausal osteoporotic women. There was no significant difference in change of bone turnover marker and safety profile between the two regimens

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Absence of a Direct Anabolic Effect of 17 β-Estradiol on Normal Human Bone Marrow Stromal Cells

    No full text

    Antioxidant <alpha>-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappa B DNA binding and prevents in vivo bone resorption induced by RANKL and TNF-alpha.

    No full text
    The relationship between oxidative stress and bone mineral density or osteoporosis has recently been reported. As bone loss occurring in osteoporosis and inflammatory diseases is primarily due to increases in osteoclast number, reactive oxygen species (ROS) may be relevant to osteoclast differentiation, which requires receptor activator of nuclear factor-κB ligand (RANKL). Tumor necrosis factor-α (TNF-α) frequently present in inflammatory conditions has a profound synergy with RANKL in osteoclastogenesis. In this study, we investigated the effects of α-lipoic acid (α-LA), a strong antioxidant clinically used for some time, on osteoclast differentiation and bone resorption. At concentrations showing no growth inhibition, α-LA potently suppressed osteoclastogenesis from bone marrow-derived precursor cells driven either by a high-dose RANKL alone or by a low-dose RANKL plus TNF-α (RANKL/TNF-α). α-LA abolished ROS elevation by RANKL or RANKL/TNF-α and inhibited NF-κB activation in osteoclast precursor cells. Specifically, α-LA reduced DNA binding of NF-κB but did not inhibit IKK activation. Furthermore, α-LA greatly suppressed in vivo bone loss induced by RANKL or TNF-α in a calvarial remodeling model. Therefore, our data provide evidence that ROS plays an important role in osteoclast differentiation through NF-κB regulation and the antioxidant α-lipoic acid has a therapeutic potential for bone erosive diseases.This work was supported by the 21C Frontier Functional Proteomics Project Grant (FPR05C2-280) and the Molecular and Cellular BioDiscovery Research Program (M1-0311-00-0024) from the Ministry of Science and Technology, Korea
    corecore