39 research outputs found

    Cyclostationary Algorithm for Signal Analysis in Cognitive 4G Networks with Spectral Sensing and Resource Allocation

    Get PDF
    Cognitive Radio (CR) effectively involved in the management of spectrum to perform improved data transmission. CR system actively engaged in the data sensing, learning and dynamic adjustment of radio spectrum parameters with management of unused spectrum in the signal. The spectrum sensing is indispensable in the CR for the management of Primary Users (PUs) and Secondary users (SUs) without any interference. Spectrum sensing is considered as the effective adaptive signal processing model to evaluate the computational complexity model for the signal transmission through Matched filtering, Waveform and Cyclostationary based Energy sensing model. Cyclostationary based model is effective for the energy based sensing model based on unique characteristics with estimation of available channel in the spectrum to extract the received signal in the PU signal. Cyclostationary based model uses the spectrum availability without any periodic property to extract the noise features. This paper developed a Adaptive Cross Score Cyclostationary (ACSCS) to evaluate the spectrum sensing in the CR network. The developed ACSCS model uses the computational complexity with estimation of Signal-to-Interference-and-Noise Ratio (SINR) elimination of cost function. ACSCS model uses the Adaptive Least square Spectral Self-Coherence Restoral (SCORE) with the Adaptive Cross Score (ACS) to overcome the issues in CR. With the derived ACSCS algorithm minimizes the computational complexity based on cost function compared with the ACS algorithm. To minimize the computational complexity pipeline triangular array based Gram-Schmidt Orthogonalization (GSO) structure for the optimization of network. The simulation performance analysis with the ACSCS scheme uses the Rician Multipath Fading channel to estimate detection probability to sense the Receiver Operating Characteristics, detection probability and probability of false alarm using Maximum Likelihood (ML) detector. The ACSC model uses the Square-law combining (SLC) with the moment generation function in the multipath fading channel for the channel sensing with reduced computational complexity. The simulation analysis expressed that ACSC scheme achieves the maximal detection probability value of 1. The analysis expressed that proposed ACSC scheme achieves the improved channel estimation in the 4G communication environment

    Immunology and Oxidative Stress in Multiple Sclerosis: Clinical and Basic Approach

    Get PDF
    Multiple sclerosis (MS) exhibits many of the hallmarks of an inflammatory autoimmune disorder including breakdown of the blood-brain barrier (BBB), the recruitment of lymphocytes, microglia, and macrophages to lesion sites, the presence of multiple lesions, generally being more pronounced in the brain stem and spinal cord, the predominantly perivascular location of lesions, the temporal maturation of lesions from inflammation through demyelination, to gliosis and partial remyelination, and the presence of immunoglobulin in the central nervous system and cerebrospinal fluid. Lymphocytes activated in the periphery infiltrate the central nervous system to trigger a local immune response that ultimately damages myelin and axons. Pro-inflammatory cytokines amplify the inflammatory cascade by compromising the BBB, recruiting immune cells from the periphery, and activating resident microglia. inflammation-associated oxidative burst in activated microglia and macrophages plays an important role in the demyelination and free radical-mediated tissue injury in the pathogenesis of MS. The inflammatory environment in demyelinating lesions leads to the generation of oxygen- and nitrogen-free radicals as well as proinflammatory cytokines which contribute to the development and progression of the disease. Inflammation can lead to oxidative stress and vice versa. Thus, oxidative stress and inflammation are involved in a self-perpetuating cycle

    Multiple Sclerosis and Its Relationship with Oxidative Stress, Glutathione Redox System, ATPase System, and Membrane Fluidity

    Get PDF
    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) with a focus on inflammation, demyelination, and damage to axons leading to neurological deficits. MS pathology is associated with excessive reactive oxygen species (ROS) and generation of reactive nitrogen species (RNS), causing oxidative/nitrosative stress. Deregulation of glutathione homeostasis and alterations in glutathione‐dependent enzymes are implicated in MS. Reactive oxygen species enhance both monocyte adhesion and migration across brain endothelial cells. In addition, ROS can activate the expression of the nuclear transcription factor‐kappa, which upregulates the expression of many genes involved in MS, such as tumor necrosis factor‐α and nitric oxide synthase, among others, leading to mitochondrial dysfunction and energy deficits that result in mitochondrial and cellular calcium overload. Loss of mitochondrial membrane potential can increase the release of cytochrome c, one pathway that leads to neuronal apoptosis. Clinical studies suggest that omega‐3 long‐chain polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have anti‐inflammatory, antioxidant, and neuroprotective effects in MS and animal models of MS. Here, we review the relationship of oxidative stress, the glutathione redox system, the ATPase system, and membrane fluidity with the development of MS. In addition, we describe the main findings of a clinical trial conducted with relapsing‐remitting MS patients who received a diet supplemented with 4 g/day of fish oil or olive oil. The effects of PUFAs supplementation on the parameters indicated above are analyzed in this work

    Epistatic interaction of ERAP1 and HLA-B in Behçet disease: a replication study in the Spanish population

    Get PDF
    Behçet's disease (BD) is a multifactorial disorder associated with the HLA region. Recently, the ERAP1 gene has been proposed as a susceptibility locus with a recessive model and with epistatic interaction with HLA-B51. ERAP1 trims peptides in the endoplasmic reticulum to optimize their length for MHC-I binding. Polymorphisms in this gene have been related with the susceptibility to other immune-mediated diseases associated to HLA class I. Our aim was, the replication in the Spanish population of the association described in the Turkish population between ERAP1 (rs17482078) and BD. Additionally, in order to improve the understanding of this association we analyzed four additional SNPs (rs27044, rs10050860, rs30187 and rs2287987) associated with other diseases related to HLA class I and the haplotype blocks in this gene region. According to our results, frequencies of the homozygous genotypes for the minor alleles of all the SNPs were increased among patients and the OR values were higher in the subgroup of patients with the HLA-B risk factors, although differences were not statistically significant. Moreover, the presence of the same mutation in both chromosomes increased the OR values from 4.51 to 10.72 in individuals carrying the HLA-B risk factors. Therefore, although they were not statistically significant, our data were consistent with an association between ERAP1 and BD as well as with an epistatic interaction between ERAP1 and HLA-B in the Spanish population

    The fifteenth data release of the Sloan Digital Sky Surveys : first release of MaNGA derived quantities, data visualization tools and stellar library

    Get PDF
    Twenty years have passed since first light for the Sloan Digital SkySurvey (SDSS). Here, we release data taken by the fourth phase of SDSS(SDSS-IV) across its first three years of operation (July 2014-July2017). This is the third data release for SDSS-IV, and the fifteenth from SDSS (Data Release Fifteen; DR15). New data come from MaNGA - we release 4824 datacubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g. stellar and gas kinematics, emission line, andother maps) from the MaNGA Data Analysis Pipeline (DAP), and a new data visualisation and access tool we call "Marvin". The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials and examples of data use. While SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V(2020-2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data.Publisher PDFPeer reviewe

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Suppressive effect of melatonin administration on ethanol-induced gastroduodenal injury in rats in vivo

    No full text
    1. Melatonin protection against ethanol-induced gastroduodenal injury was investigated in duodenum-ligated rats. 2. Melatonin, injected i.p. 30 min before administration of 1 ml of absolute ethanol, given by gavage, significantly decreased ethanol-induced macroscopic, histological and biochemical changes in the gastroduodenal mucosa. 3. Ethanol-induced lesions were detectable as haemorrhagic streaks. Ethanol administration damaged 36% and 25% of the total gastric and duodenal surface, respectively. Melatonin treatment reduced ethanol-induced gastric and duodenal damage to 14% and 8%, respectively. When indomethacin was given together with ethanol, the gastric damaged area was 44% of the total surface, while the duodenal damaged area was 35%; melatonin administration reduced the damage to only 13% of the total gastric surface and to 12% of total duodenal surface. 4. Both stomach and duodenum of ethanol-treated animals showed polymorphonuclear leukocyte (PMN) infiltration. The number of PMN increased more than 600 and 200 times in stomach and duodenum, respectively, following ethanol administration. Melatonin treatment reduced ethanol-induced PMN infiltration by 38% in the stomach and 20% in the duodenum. In indomethacin-ethanol-treated rats, the number of PMN increased by 875% compared to control group in the stomach and by 264% in duodenum. Melatonin administration reduced the indomethacin-ethanol-induced PMN rise by 57% in the stomach and 40% in the duodenum. 5. Gastroduodenal total glutathione (tGSH) concentration and glutathione reductase (GSSG-Rd) activity were significantly reduced following ethanol and indomethacin-ethanol administration. Melatonin ameliorated both the decrease in tGSH concentration as well as the reduction of GSSG-Rd activity elicited by ethanol both in the stomach and duodenum; melatonin was effective against indomethacin-ethanol-induced damage only in the stomach. 6. Ethanol-induced gastroduodenal damage is believed to be mediated by the generation of free radicals. Recently, a number of in vivo and in vitro experiments have shown melatonin to be an effective antioxidant and free radical scavenger; thus, we conclude that the protection by melatonin against ethanol-induced gastroduodenal injury is due, at least in part, to its radical scavenging activity
    corecore