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Abstract

Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by
the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the
third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from
MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar),
the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps)
from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call “Marvin.” The next
data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data
here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also
includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we
describe the location and format of the data and tools and cite technical references describing how it was obtained
and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads,
tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and
will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the
SDSS data archive for many years beyond the collection of data.

Key words: atlases – catalogs – surveys

1. Introduction

The Sloan Digital Sky Survey (SDSS; York et al. 2000) data
releases began with the Early Data Release, or EDR, in 2001
June (Stoughton et al. 2002) and have been heavily used by
astronomers and the broader public since that time (Raddick
et al. 2014a, 2014b). Here, we present the 15th public data
release from SDSS, or DR15, made publicly available on 2018
December 10.

SDSS has been marked by four phases so far, with plans for
a fifth. Details are available in the papers describing SDSS-I
(EDR, DR1–DR5; York et al. 2000), SDSS-II (DR6–DR7;
Frieman et al. 2008; Yanny et al. 2009), SDSS-III (DR8–
DR12; Eisenstein et al. 2011), and SDSS-IV (DR13–DR15;

Blanton et al. 2017). Kollmeier et al. (2017) described the plans
for SDSS-V, to start in mid-2020.
The data releases contain information about SDSS optical

broadband imaging, optical spectroscopy, and infrared
spectroscopy. Currently, SDSS-IV conducts optical and infra-
red spectroscopy (using two dedicated spectrographs; Smee
et al. 2013; Wilson et al. 2018) at the 2.5 m Sloan Foundation
Telescope at Apache Point Observatory (APO; Gunn et al.
2006) and infrared spectroscopy at the du Pont Telescope at
Las Campanas Observatory (LCO; Bowen & Vaughan 1973).
SDSS-IV began observations in 2014 July and consists of

three programs:

1. The extended Baryon Oscillation Spectroscopic Survey
(eBOSS; Dawson et al. 2016) is surveying galaxies and
quasars at redshifts z 0.6~ –3.5 for large- scale structure.
It includes two major subprograms:
(a) The SPectroscopic IDentification of ERosita Sources

(SPIDERS; Dwelly et al. 2017) investigates the nature
of X-ray-emitting sources, including active galactic
nuclei (AGNs) and galaxy clusters.
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(b) The Time Domain Spectroscopic Survey (TDSS;
Morganson et al. 2015) is exploring the physical
nature of time-variable sources through spectroscopy.

2. Mapping Nearby Galaxies at APO (MaNGA; Bundy
et al. 2015) uses integral-field spectroscopy (IFS) to study
a representative sample of ∼10,000 nearby galaxies.

3. APOGEE-2 (the second phase of the APO Galactic
Evolution Experiment or APOGEE; Majewski et al.
2017) performs a large-scale and systematic investigation
of the entire Milky Way with near-infrared, high-
resolution, and multiplexed instrumentation.

SDSS-IV has had two previous data releases (DR13 and
DR14; Albareti et al. 2017 and Abolfathi et al. 2018,
respectively), which contain the first two years of eBOSS,
MaNGA, and APOGEE-2 data and new calibrations of the
SDSS imaging data set.

DR15 contains new reductions and new data from MaNGA.
This release includes the first three years of MaNGA data plus a
new suite of derived data products based on the MaNGA data
cubes, a new data access tool for MaNGA known as Marvin,
and data from a large ancillary program aimed at improving the
stellar library available for MaNGA (MaStar; the MaNGA
Stellar Library).

The full scope of the data release is described in Section 2,
and information on the data distribution is given in Section 3.
Each of the subsurveys is described in its own section, with
MaNGA in Section 4 and APOGEE-2 and eBOSS (including
SPIDERS and TDSS) in Sections 5.1 and 5.2, respectively. We
discuss future plans for SDSS-IV and beyond in Section 6.
Readers wanting a glossary of terms and acronyms used in
SDSS can find one athttps://www.sdss.org/dr15/help/
glossary/.

2. Scope of Data Release 15

As with all previous SDSS public data releases, DR15 is
cumulative and includes all data products that have been
publicly released in earlier SDSS data releases. All previous
releases are archived online to facilitate science replication;
however, we recommend new users always make use of the
latest DR (even when using older data) to ensure they are using
the most recent reduction routines. The scope of DR15 is
shown in Table 1, and its components can be summarized as
follows.

1. MaNGA integral-field spectroscopic data from 285
plates, including 119 plates observed between 2016
September 26 (MJD 57658) and 2017 June 29 (MJD
57934) that are newly released data in DR15. This data
set is identical to the internally released MaNGA Product
Launch-7 (MPL-7) and contains the same set of galaxies
but processed with a different version of the reduction
pipeline from the earlier internally released MPL-6.
DR15 contains 4824 reconstructed 3D data cubes, of
which 4688 are target galaxies (the remainder are
ancillary targets, which include galaxies, parts of
galaxies, and some deep sky fields). This data set
includes 67 repeat observations, so that the total number
of unique galaxies in this data release is 4621. Most of
these galaxies are part of the MaNGA main sample, but
ancillary target galaxies are also included in this count
(see Table 4 for a summary of these).

2. In addition to the MaNGA data cubes, DR15 also releases
for the first time data products generated by the Data
Analysis Pipeline (see Section 4.1.2). These products are
available for all data cubes in DR15, with the exception
of the cubes generated by some ancillary programs (i.e.,
Coma, IC 342, and M31) if they do not have redshifts
(e.g., sky fields).

3. Alongside the new MaNGA data, and data products,
DR15 also marks the launch of Marvin, a new tool to
visualize and analyze MaNGA data cubes and maps (see
Section 4.2).

4. DR15 is the first public data release for the MaNGA
Stellar Library, MaStar (see Section 4.3), which contains
3326 optical stellar spectra.

5. In addition to updates to two previously released Value
Added Catalogs (VACs), DR15 also includes six new
VACs contributed by the MaNGA team (see Table 2).
This brings the total number of VACs in the SDSS public
data releases to 40.

6. Finally, DR15 includes a re-release of all previous
versions of SDSS data releases. This includes the most
recent data releases for APOGEE-2 and eBOSS
(described in Abolfathi et al. 2018, DR14), and the most
recent release of the SDSS imaging data (described in
Albareti et al. 2017, DR13). Data of previous SDSS
surveys are also included: the Legacy Spectra were
finalized in DR8 (Aihara et al. 2011), and the SEGUE-1
and SEGUE-2 spectra in DR9 (Ahn et al. 2012). The

Table 1
Reduced SDSS-IV Spectroscopic Data in DR15

Target Category # DR13
#

DR13+14
# DR13
+14+15

eBOSS
LRG samples 32,968 138,777 138,777

ELG Pilot Survey 14,459 35,094 35,094
Main QSO Sample 33,928 188,277 188,277

Variability Selected QSOs 22,756 87,270 87,270
Other QSO samples 24,840 43,502 43,502

TDSS Targets 17,927 57,675 57,675
SPIDERS Targets 3133 16,394 16,394

Standard Stars/White Dwarfs 53,584 63,880 63,880

APOGEE-2
All Stars 16,4562 263,444 263,444

NMSU 1 m stars 894 1018 1018
Telluric stars 17,293 27,127 27,127

APOGEE-N Commissioning
stars

11,917 12,194 12,194

MaNGA Cubes 1390 2812 4824
MaNGA main galaxy sample:

PRIMARY_v1_2 600 1278 2126
SECONDARY_v1_2 473 947 1665

COLOR-ENHANCED_v1_2 216 447 710
MaStar (MaNGA Stellar
Library)

0 0 3326

Other MaNGA ancillary
targetsa

31 121 324

Note.
a Many MaNGA ancillary targets were also observed as part of the main galaxy
sample and are counted twice in this table; some ancillary targets are not
galaxies.
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MARVELS spectra were last re-reduced for DR12 (Alam
et al. 2015).

3. Data Distribution

The DR15 data can be accessed through a variety of
mechanisms, depending on the type of data file and the needs
of the user. All data access methods are described on the SDSS
website (https://www.sdss.org/dr15/data_access), and we
also provide tutorials and examples for accessing and working
with SDSS data products at https://www.sdss.org/dr15/
tutorials. We describe our four main data access mechanisms
below.

All raw and processed imaging and spectroscopic data can
be accessed through the Science Archive Server (SAS, https://
data.sdss.org/sas/dr15). This site includes intermediate data
products and VACs. The SAS is a file-based system, from
which data can be directly downloaded by browsing or in bulk
mode using rsync, wget, or Globus Online. Bulk downloading
methods are outlined at https://www.sdss.org/dr15/data_
access/bulk. All data files available on the SAS have a data
model (https://data.sdss.org/datamodel), which provides a
detailed overview of the content of each data file.

Processed optical and infrared spectra, as well as processed
imaging, can also be accessed on the SAS through the Science
Archive Webapp (SAW), an interactive web application
(webapp;http://dr15.sdss.org links to the DR15 version). In
DR15, the SAW is serving MaStar spectra for the first time.
Through this webapp, users can display individual spectra and
overlay model fits included on the SAS. There is a search
option available to select spectra based on, e.g., plate number,
coordinates, redshift, or ancillary observing program. Searches
can be saved for future references as permalinks. Spectra can be
directly downloaded from the SAS through the webapp, and
links are included to the SkyServer Explore page for each
object. The user can select SDSS data releases back to DR8
(the SAW was originally developed during SDSS-III so serves
data from that phase of SDSS onwards only), but is encouraged
to always use the most recent data release at https://data.sdss.
org/home.

MaNGA data cubes and maps are not available in the SAW,
but can be visualized and analyzed through Marvin. Marvin,
described in detail in Section 4.2, provides links to the SAS for
downloading data files, as well as the SkyServer Explore page.
The Catalog Archive Server (CAS; Thakar 2008; Thakar

et al. 2008) stores the catalogs of DR15: these include
photometric, spectroscopic, and derived properties. Some of
the VACs also have catalogs that are stored on the CAS. The
CAS can be accessed through the SkyServer webapp (https://
skyserver.sdss.org), which provides Explore tools as well as the
option of browser-based queries in synchronous mode.
CASJobs (https://skyserver.sdss.org/casjobs) is suitable for
more extensive queries, which are executed in asynchronous or
batch mode, and offers users personal storage space for query
results (Li & Thakar 2008). The CAS is integrated with
SciServer(https://www.sciserver.org), which offers several
data-driven science services, including SciServer Compute, a
system that allows users to run Jupyter notebooks in Docker
containers, directly accessing the SDSS catalogs.
All of the data reduction software that are used by the

various SDSS-IV teams to reduce and process their data
(including links to the Marvin Repository on Github) is
publicly available athttps://www.sdss.org/dr15/software/
products.

4. MaNGA

The MaNGA survey uses a custom-built instrument (Drory
et al. 2015), which feeds fibers from a suite of hexagonal
bundles into the BOSS spectrograph (Smee et al. 2013). Over
its planned five years of operations, MaNGA aims to get data
for ∼10,000 nearby galaxies (Law et al. 2015; Yan et al.
2016a, 2016b; see Wake et al. 2017 for details on the sample
selection).
DR15 consists of MaNGA observations taken during the first

three years of the survey (up to summer 2017) and nearly
doubles the sample size of fully reduced galaxy data products
previously released in DR14 (Abolfathi et al. 2018). These data
products include raw data, intermediate reductions such as flux-
calibrated spectra from individual exposures, and final data
cubes and row-stacked spectra (RSS) produced using the

Table 2
New or Updated Value Added Catalogs

Description Section Reference(s)

Mini data release, 2018 Jul 31
eBOSS DR14 QSO LSS catalogs Section 5.2 Ata et al. (2018)
eBOSS DR14 LRG LSS catalogs Section 5.2 Bautista et al. (2018)
Optical emission-line properties and black hole mass Section 5.3 Coffey et al. (2018)
Estimates for SPIDERS DR14 Quasars
Open Cluster Chemical Abundance and Mapping catalog Section 5.1.2 Donor et al. (2018)
DR15, 2018 Dec 10
GEMA-VAC: Galaxy Environment for MaNGA VAC Section 4.5.4 M. Argudo-Fernandez et al. (2019, in preparation)
MaNGA Spectroscopic Redshifts Section 4.5.5 Talbot et al. (2018)
MaNGA Pipe3D: Spatially resolved and integrated Section 4.5.1 Sánchez et al. (2016, 2018)
Properties of DR15 MaNGA galaxiesa

MaNGA Firefly Stellar Populationsa Section 4.5.1 Goddard et al. (2017a), Wilkinson et al. (2017), Parikh et al. (2018)
MaNGA PyMorph DR15 photometric catalog Section 4.5.2 Fischer et al. (2018)
MaNGA Morphology Deep Learning DR15 catalog Section 4.5.2 Domínguez Sánchez et al. (2018)
H I-MaNGA Data Release 1 Section 4.5.3 Masters et al. (2018)
MaNGA Morphologies from Galaxy Zoo Section 4.5.2 Willett et al. (2013), Hart et al. (2016)

Note.
a Update to DR14 VAC.

5

The Astrophysical Journal Supplement Series, 240:23 (25pp), 2019 February Aguado et al.

https://www.sdss.org/dr15/data_access
https://www.sdss.org/dr15/tutorials
https://www.sdss.org/dr15/tutorials
https://data.sdss.org/sas/dr15
https://data.sdss.org/sas/dr15
https://www.sdss.org/dr15/data_access/bulk
https://www.sdss.org/dr15/data_access/bulk
https://data.sdss.org/datamodel
http://dr15.sdss.org
https://data.sdss.org/home
https://data.sdss.org/home
https://skyserver.sdss.org
https://skyserver.sdss.org
https://skyserver.sdss.org/casjobs
https://www.sciserver.org
https://www.sdss.org/dr15/software/products
https://www.sdss.org/dr15/software/products


MaNGA Data Reduction Pipeline (DRP; Law et al. 2016).
DR15 includes DRP data products for 4824 MaNGA cubes
distributed among 285 plates, corresponding to 4621 unique
galaxies plus 67 repeat observations and 118 special targets
from the ancillary programs (see Section 4.4). Unlike in
previous data releases, data cubes and summary RSS files are
no longer produced for the 12 seven-fiber mini bundles on each
plate that target bright stars and are used to derive the
spectrophotometric calibration vector for each exposure (see
Yan et al. 2016b); these observations will from here on instead
be included in the MaStar stellar spectral library (see
Section 4.3).

In addition, for the first time, DR15 includes the release of
derived spectroscopic products (e.g., stellar kinematics, emis-
sion-line diagnostic maps, etc.) from the MaNGA DAP
(Belfiore et al. 2019; Westfall et al. 2019); see Section 4.1.2.

We provide the sky footprint of MaNGA galaxies released in
DR15 in Figure 1, while the projected final survey footprint is
shown overlaid on the footprint of other relevant surveys and

for two different expectations for weather at the telescope in
Figure 2.

4.1. MaNGA Data and Data Products

4.1.1. The Data Reduction Pipeline

The MaNGA DRP is the IDL-based software suite that
produces final flux-calibrated data cubes from the raw
dispersed fiber spectra obtained at APO. The DRP is described
in detail by Law et al. (2016) and consists of two stages. The
“2d” DRP processes individual exposures, applying bias and
overscan corrections, extracting the one-dimensional fiber
spectra, sky-subtracting and flux-calibrating the spectra, and
combining information from the four individual cameras in the
BOSS spectrographs into a single set of RSS (mgCFrame files)
on a common wavelength grid. The “3d” DRP uses astrometric
information to combine the mgCFrame fiber spectra from
individual exposures into a composite data cube on a
regularized 0 5 grid, along with information about the inverse

Figure 1. The sky distribution (Mollweide equatorial projection for decl. 20>- ) of MaNGA plates released in DR15 (purple). This is overlaid on a plot of all
possible MaNGA plates (in gray). MaNGA targets are selected from a sample with SDSS-I photometry and redshifts; hence, this footprint corresponds to Data Release
7 imaging data (Abazajian et al. 2009). Each plate contains 17 MaNGA targets, and around 30% of all possible plates will be observed in the full six-year survey. The
most likely final footprint is indicated in Figure 2.

Figure 2. The sky distribution (in a rectangular projection for clarity) of the MaNGA projected final footprint overlaid with information about other surveys. Because
MaNGA targets are selected from a sample with SDSS-I photometry and redshifts, the selection of all possible plates (gray) corresponds to Data Release 7 imaging
data (Abazajian et al. 2009). Each plate contains 17 MaNGA targets, and around 30% of all possible plates will be observed in the full six-year survey; this plot
indicates the likely final footprint for (a) typical weather conditions (Tier 1) and (b) good weather conditions (Tier 2). Completed plates noted on this plot show all
observed plates at the time this was created, which is approximately one year of observing more than is being released in DR15. Where those plates are not filled in
they have H I follow-up from the H I-MaNGA program (Masters et al. 2018; some, but not all of these data are released as a VAC in DR15—see Section 4.5.3). For
the most up-to-date version of this plot, seehttps://www.sdss.org/surveys/manga/forecast/.
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variance, spaxel mask, instrumental resolution, and other key
parameters. The mgCFrame per-exposure files are produced
on both linear and logarithmic wavelength grids directly from
the raw detector pixel sampling, and used to construct the
corresponding logarithmic and linearly sampled data cubes.

The DRP data products released in DR15 are largely similar
to those released in DR13 and DR14 (and identical to the
internal collaboration release MPL-7) and consist of multi-
extension FITS files giving the flux, inverse variance, mask,
and other information for each object. The metadata from all of
our observations are summarized in a FITS binary table,
“drpall-v2_4_3.fits,” detailing the coordinates, targeting
information, redshift, data quality, etc. The version of the
MaNGA DRP used for DR15 (v2_4_3)111 incorporates some
significant changes compared to the DR14 version of the
pipeline (v2_1_2). These changes include the following:

1. The MaNGA DRP has been extended to produced one-
dimensional reduced spectra for each of the MaStar
targets observed during bright time; details of these
modifications are described in Section 4.3.

2. DR15 introduces some significant changes in the overall
flux calibration relative to DR13/DR14 (and relative to
the description by Yan et al. 2016b). Foremost among
these is the use of BOSZ stellar spectral models (Bohlin
et al. 2017) instead of the original Kurucz templates built
in 2003 to derive the spectrophotometric calibration
based on contemporaneous observations of standard stars
with the MaNGA seven-fiber mini bundles. Since the
BOSZ templates picked by the pipeline are bluer by 0.03
mag in SDSS u−r color than the version of the Kurucz
models produced in 2003, this change slightly increases
the overall flux blueward of 4000Å in the MaNGA data
cubes. Test observations of hot white dwarfs compared to
ideal blackbody models generally show better perfor-
mance using the new BOSZ calibration (as illustrated in
Figure 3). Additionally, the throughput loss vector
applied to the observational data is now smoother at
many wavelengths; high-frequency basis spline fits are
still used in telluric regions, but the spline has a much
lower frequency outside the telluric regions to avoid
introducing artifacts due to slight template mismatches.
This significantly reduces the amount of artificially high-
frequency, low-level (∼few percent) variations seen in
the resulting spectra from earlier versions. The list of
telluric regions is also updated.

3. Many aspects of the spectral line-spread function (LSF)
estimation in the DRP have changed in DR15 in order to
improve the level of agreement with independent
estimates (observations of bright stars and galaxies
previously observed at higher spectral resolution, obser-
vations of the solar spectrum, etc.). These changes
include the use of a Gaussian comb method to propagate
LSF estimates through the wavelength rectification step,
computation of both pre-pixelized and post-pixelized LSF
estimates,112 improved interpolation over masked
regions, and a modified arc lamp reference line list to

improve LSF estimation and wavelength calibration in
the far blue by rejecting poor-quality lines. The DRP data
products contain additional extensions to describe this
new information, including a 3D cube describing the
effective LSF at each spaxel within the MaNGA data
cube as a function of wavelength; this combines the
information known about the LSF in each individual fiber
spectrum to describe the net effect of stacking spectra
with slightly different resolutions. The LSF changes and
assessment against various observational calibrators will
be described in greater detail by D. Law et al. (2019, in
preparation).

4. The DRP data cubes now contain extensions describing
the spatial covariance introduced in the data cubes by the
cube-building algorithm. This information is provided in
the form of sparse correlation matrices at the character-
istic wavelengths of the SDSS griz filters and can be
interpolated to estimate the correlation matrix at any other
wavelength in the MaNGA data cubes. Note that the
DR14 paper incorrectly stated that those data included
these extensions. They did not (the team-internal MPL-5,
which is the most similar MPL to DR14, did, but DR14
itself did not), so this is the first release of these
extensions.

5. The DRPall summary file for DR15 contains 10
additional columns with respect to DR14. These columns
include an estimate of the targeting redshift z that is used
as the starting guess by the DAP when analyzing the
MaNGA data cubes. z is generally identical to the NASA-
Sloan Atlas (NSA) (Blanton et al. 2011) catalog redshift
for the majority of MaNGA galaxies, but the origin of the
redshift can vary for galaxies in the ∼25 MaNGA

Figure 3. Flux calibration difference between DR14 and DR15 MaNGA data
reductions. The upper panel shows the spectra for an Oke standard, HZ 21, a
T=100,000K star (Oke & Shipman 1971; Reynolds et al. 2003), as given by
the CALSPEC database (black) and by MaNGA in DR14 (red) and DR15
(blue) averaging over nine exposures taken on plate 7444. The small difference
at the blue wavelengths can be seen more obviously in the bottom panel where
we divide these three spectra by a T=100,000K blackbody spectrum
normalized at 6000–6100 Å. Ignoring the absorption lines, this provides a test
of our flux calibration. Using the BOSZ templates in DR15, the resulting
continuum of this white dwarf agrees much better with the blackbody spectrum
below 5000 Å, which is significantly improved compared to DR14, which uses
the version of the Kurucz models (Kurucz 1979; Kurucz & Avrett 1981)
produced in 2003, and to CALSPEC. (One can also compare this with Figure9
of Yan et al. 2016b).

111 https://svn.sdss.org/public/repo/manga/mangadrp/tags/v2_4_3
112 That is, whether the best-fit Gaussian model of the lines is determined by
evaluation at the pixel midpoints (post-pixelized) or integrated over the pixel
boundaries (pre-pixelized). The two techniques can differ at the 10% level for
marginally undersampled lines, and the appropriate value to use in later
analyses depends on the fitting algorithm.
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ancillary programs. Additional columns include a variety
of estimates of the volume weights for the MaNGA
primary and secondary galaxy samples.

6. Additional under-the-hood modifications to the DRP
have been made for DR15 that provide minor bug fixes
and performance improvements. These include modifica-
tions to the reference pixel flat fields for certain MJDs,
updates to the reference bias and bad pixel masks, better
rejection of saturated pixels, updates to the algorithms
governing weighting of the wavelength rectification
algorithm near ultrabright emission lines, etc. A detailed
change log can be found in the DRP online repository.113

When working with the MaNGA data, note that there are
several quality-control features that should be used to ensure
the best scientific quality output. First, each MaNGA data cube
has a FITS header keyword DRP3QUAL that describes the
overall quality of the cube (identifying issues such as focus
problems, flux-calibration problems, large numbers of dead
fibers, etc.). About 1% of the data cubes are flagged as
significantly problematic (i.e., have the CRITICAL quality bit
set) and should be treated with extreme caution. Additionally,
there is a 3d mask extension to each data cube that contains
spaxel-by-spaxel information about problematic regions within
the cube. This mask identifies issues such as dead fibers (which
can cause local glitches and holes within the cube), foreground
stars that should be masked by analysis packages such as the
DAP, etc. Although the vast majority of cosmic rays and other
transient features are detected by the DRP and flagged (either
for removal or masking), lower intensity glitches (e.g., where
the edge of a cosmic-ray track intersects with a bright emission
line) can sometimes be missed and propagate into the final data
cubes where they show up as unmasked hot pixels. Future
improvements to the DRP may further address this issue, but
caution is thus always advised when searching for isolated
emission features in the data cubes.

For information on downloading MaNGA data in DR15,
please see Section 3; new for DR15 is the Marvin interface to
MaNGA data (see Section 4.2 below).

4.1.2. The Data Analysis Pipeline

The MaNGA DAP is the SDSS-IV software package that
analyzes the data produced by the MaNGA DRP. The DAP
currently focuses on “model-independent” properties, i.e.,
those relatively basic spectral properties that require minimal
assumptions to derive. For DR15, these products include stellar
and ionized-gas kinematics, nebular emission-line fluxes and
equivalent widths, and spectral indices for numerous absorp-
tion features, such as the Lick indices (Worthey &
Ottaviani 1997; Trager et al. 1998) and D4000 (Bruzual 1983).
Examples of the DAP-provided measurements and model fits
are shown in Figure 4, discussed through the rest of this
section.

An overview of the DAP is provided by Westfall et al.
(2019). There, we describe the general workflow of the
pipeline, explain the detailed algorithm used for each of its
primary products, provide high-level assessments of its
performance, and describe the delivered data products in
detail. In-depth assessments of the stellar kinematics, ionized-
gas kinematics, emission-line fluxes, and emission-line

equivalent widths are provided by Westfall et al. (2019) and
Belfiore et al. (2019). All survey-provided properties are
currently derived from the data cubes sampled in constant steps
of the logarithm of the wavelength (i.e., the LOGCUBE files).
However, the core functions are developed to consider each
spectrum largely independently.
The DAP allows for a number of different options when

analyzing the data, which we refer to as the analysis mode or
DAPTYPE. In DR15, the DAPTYPE joins the keywords
identifying the type of spatial binning applied (e.g., Voronoi-
binned to signal-to-noise ratio (S/N)10, VOR10), the
parametric form of the line-of-sight velocity distribution
(LOSVD) used for the stellar kinematics (a Gaussian function,
GAU), and the template set used to model the stellar continuum
(a hierarchically clustered distillation of the MILES stellar
library, MILESHC). For DR15, two DAPTYPEs have been
made available, VOR10-GAU-MILESHC and HYB10-GAU-
MILESHC. That is, only the binning approach differs between
the two available DAPTYPEs, primarily distinguishing whether
or not the main analysis steps are performed on binned spectra
or individual spaxels. The stellar LOSVD is always assumed to
be Gaussian, and the 42 templates resulting from a hierarchical
clustering analysis of the MILES stellar library (Sánchez-
Blázquez et al. 2006; Falcón-Barroso et al. 2011) are always
used for the continuum templates; details regarding the latter
are discussed in Westfall et al. (2019).
In the first mode (VOR10-GAU-MILESHC), the spaxels are

binned using the Voronoi-binning scheme from Cappellari &
Copin (2003) to a minimum g-band S/N of 10 per spectral
pixel. The first mode then performs all subsequent analysis on
those binned spectra. Alternatively, the second mode (HYB10-
GAU-MILESHC) only performs the stellar kinematics on the
binned spectra; the subsequent emission-line and spectral-index
measurements are all performed on individual spaxels. This
“hybrid” binning approach is likely the approach that most
users will want to use in their analysis. The main exception to
this is if any subsequent analyses depend on, e.g., the
availability of emission-line models for the binned spectra, as
is the case for the FIREFLY VAC (Wilkinson et al. 2017; see
Section 4.5.1). The example data shown in Figure 4 are for
observation 8138-12704 following from the hybrid-binning
approach. Close inspection of the stellar velocity field will
show that outermost regions have been binned together, all
showing the same stellar velocity measurement. However, the
Hα flux and D4000 maps have measurements for each spaxel.
The DAP is executed for all observations obtained by the

MaNGA survey; however, some observations, primarily those
obtained for our ancillary science programs, do not have all the
required parameters currently needed as input by the DAP.
Additionally, a few observations (<0.3%) trip corner failure
modes of the DAP leading to errors in the construction of its
main output files. These issues mean that not all LOGCUBE files
provided by the DRP have associated DAP products. For those
observations that are successfully analyzed (4718 in total), the
DAP provides two main output files for each DAPTYPE, the
MAPS file and the model LOGCUBE file. Examples of how to
access and plot the data in these files are provided in a set of
tutorials on the data-release website athttps://www.sdss.org/
dr15/manga/manga-tutorials/dap-tutorial/.
The MAPS file contains all of the derived properties

organized as a series of maps, or images, that have the same
on-sky projection as a single wavelength channel in the

113 https://svn.sdss.org/public/repo/manga/mangadrp/tags/v2_4_3/
RELEASE_NOTES
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analyzed DRP LOGCUBE file. The images in the left panels of
Figure 4 are example maps taken from the DAP MAPS file for
observation 8138-12704. The maps are organized in a series of
extensions grouped by the measurement they provide. Some
extensions contain a single image with all of the relevant data,
whereas other extensions have multiple images, one for, e.g.,

each of the measured emission lines. For example, the
STELLAR_VEL extension has a single image with the
measured single-component stellar velocity measured for each
spatial bin (like that shown in Figure 4), while the
SPECINDEX extension has 46 images, organized similarly to
the wavelength channels in the DRP data cubes (the D4000

Figure 4. Example data provided by the MaNGA data analysis pipeline (DAP) for MaNGA observation 8138-12704, MaNGA ID 1-339041, following the hybrid-
binning approach (DAPTYPE is HYB10-GAU-MILESHC). The left columns shows maps, or images, of some of the DAP-derived quantities, namely, from top to
bottom, the stellar velocity field, Hα flux, and D4000 spectral index, where the measured value is indicated by the colorbar to the right of each map panel. The
effective beam size for the MaNGA observations (FWHM∼2 5) is shown by the gray circle in the bottom left of each map panel. Three spaxels are highlighted and
labeled (a), (b), and (c), according to their spectra plotted in the right column. Each spectrum panel shows the observed MaNGA spectrum (black), stellar-continuum-
only model (blue), and best-fitting (stars+emission lines) model (red); the residuals between the data (black) and the model (red) are shown in gray. Note that the red
and blue lines are identical except for regions with nebular emission. A few salient emission and absorption features are marked in each panel. Inset panels provide a
more detailed view of the quality of the fitted models in the regions highlighted by gray boxes. The spectrum panels only show the spectral regions fit by the DAP,
which is limited by the MILES spectral range for DR15.
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map shown in Figure 4 is in the 44th channel of the
SPECINDEX extension).

The DAP-output model LOGCUBE file provides both the S/
N-binned spectra and the best-fitting model spectra. From these
files, users can plot the best-fitting model spectra against the
data, as demonstrated in Figure 4, as an assessment of the
success of the DAP. This is particularly useful when a result of
the fit, e.g., the Hα flux, seems questionable. Indeed, Westfall
et al. (2019) note regimes where the DAP has not been
appropriately tailored to provide a successful fit; this is
particularly true for spectra with very broad emission lines,
such as the broad-line regions of AGNs. Users are encouraged
to make sure they are well aware of these limitations in the
context of their science goals. Finally, in combination with the
DRP LOGCUBE file, users can use the model LOGCUBE data to
construct emission-line-only or stellar-continuum-only data
cubes by subtracting the relevant model data.

Although we have endeavored to make the output data user-
friendly, there are a few usage quirks of which users should be
aware:

1. As with all SDSS data products, users are strongly
encouraged to understand and use the provided quality
flags, for those data provided as masks. The mask bits
provide important information as to whether or not users
should trust the provided measurements in their particular
use case. The conservative approach of ignoring any
measurement where the mask bit is nonzero is safe, at
least in the sense of not including any measurements we
know to be dubious. However, the DAP makes use of an
UNRELIABLE flag that is intended to be more of a
warning that users should consider how the measure-
ments affect their science as opposed to an outright
rejection of the value. The UNRELIABLE flag is put to
limited use in DR15, only flagging measurements that
hinge on bandpass integrals (emission-line moments and
non-parametric equivalent widths, and spectral indices)
where any pixels are masked within the bandpass.
However, this bit may become more extensively used
in future releases as we continue to vet the results of the
analysis. A more extensive discussion of the mask bits
and their usage is provided by Westfall et al. (2019).

2. To keep the format of the output files consistent with the
DRP LOGCUBE files, the binned-spectra and binned-
spectra measurements are repeated for each spaxel within
a given bin. This means that, e.g., the stellar velocity
dispersion measured for a given binned spectrum is
provided in the output DAP map at the location of each
spaxel in that bin. Of course, when analyzing the output,
one should most often only be concerned with the unique
measurements for each observation. To this end, we
provide an extension in the MAPS file that provides a “bin
ID” for each spaxel. Spaxels excluded from any analysis
(as in the buffer region during the data cube construction)
are given a bin ID of −1. This allows the user to select all
of the unique measurements by finding the locations of all
unique bin ID values, ignoring anything with a bin ID of
−1. Tutorials for selecting the unique measurements in
the DAP-output maps are provided via the data-release
website athttps://www.sdss.org/dr15/manga/manga-
tutorials/dap-tutorial/.

3. Corrections that have not been applied to the data in the
output files are provided for a few quantities in the MAPS

file. The stellar velocity dispersion and ionized-gas
velocity dispersions are provided as measured from the
core pPXF software (Cappellari & Emsellem 2004;
Cappellari 2017) used by the DAP. This means that any
instrumental effects present during the fitting process are
also present in the output data. For both the stellar and
ionized-gas dispersions, we have estimated the instru-
mental corrections for each measurement and provided
the result in extensions in the MAPS file. These
corrections should be applied when using the data for
science. For the velocity dispersion measurements, our
purpose in not applying the corrections ourselves is to
allow the user freedom in how they deal with measure-
ments of the dispersion that are below our measurement
of the instrumental resolution. Such issues can be
pernicious at low velocity dispersion, and the treatment
of these data can have significant effects on, e.g., the
construction of a radially averaged velocity dispersion
profile (see Westfall et al. 2019, who discuss this at
length, and also Penny et al. 2016, who discuss this issue
for dwarf galaxies). Corrections are also provided (but
not applied) for the spectral indices to convert the
measurement to zero velocity dispersion at the spectral
resolution of the MILES stellar templates (Beifiori et al.
2011) used during the stellar-continuum fit. Additional
details regarding these corrections are provided in
Westfall et al. (2019), and tutorials demonstrating how
to apply them to the data are provided via the data-release
website.

4. In the hybrid-binning scheme, the stellar kinematics are
performed on the binned spectra, but the emission-line
fits are performed on the individual spaxels. When
comparing the model to the data, the user must compare
the emission-line modeling results to the DRP LOGCUBE
spectra, not to the binned spectra provided in the DAP
model LOGCUBE file, unless the “binned” spectrum is
actually from a single spaxel. Tutorials for how to
overplot the correct stellar-continuum and emission-line
models are provided via the data-release website.

Finally, similar to the DRPall file provided by the MaNGA
DRP, the DAP constructs a summary table called the DAPall
file. This summary file collates useful data from the output
DAP files, as well as providing some global quantities drawn
from basic assessments of the output maps, that may be useful
for sample selection. For example, the DAPall file provides
the luminosity-weighted stellar velocity dispersion and inte-
grated star formation rate within 1 Re. The sophistication of
these measurements is limited in some cases. For example, the
star formation rate provided is simply based on the measured
Hα luminosity and does not account for internal attenuation or
sources of Hα emission that are unrelated to star formation; as
such, we caution users to make use of this for science only after
understanding the implications of this caveat. Development and
refinement of DAPall output will continue based on internal
and community input. Additional discussion of how these
properties are derived is provided by Westfall et al. (2019).
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4.2. Marvin Access to MaNGA

Marvin (Cherinka et al. 2018)114 is a new tool designed for
streamlined access to the MaNGA data, optimized for
overcoming the challenges of searching, accessing, and
visualizing the complexity of the MaNGA data set. Whereas
previous generations of SDSS took spectra only of the centers
of galaxies, MaNGA takes many spectra of each galaxy, in a
hexagonal grid across the face of each (IFU bundle), which are
combined into a final data cube. This means that for each object
there is not a single spectrum, but in fact a suite of complex
results in one or more data cubes. The motivation for Marvin
arises from the additional complexity of MaNGA data, namely
the spatial interconnectivity of its spectra.

Marvinallows the user to:

1. access reduced MaNGA data cubes locally, remotely, or
via a web interface.

2. access and visualize data analysis products.
3. perform powerful queries on the metadata.
4. abstract the MaNGA data model and write code that is

agnostic to where the data actually live.
5. make better visualization and scientific decisions by

mitigating common mistakes when accessing these types
of data.

Marvin has two main components: a webapp and a Python
package of tools, both using an underlying Marvin API (or
Application Programming Interface). The webapp, Marvin
Web,115 provides an easily accessible interface for searching
the MaNGA data set and visual exploration of individual
MaNGA galaxies. The Marvin suite of Python tools, Marvin
Tools, provides seamless programmatic access to the
MaNGA data for more in-depth scientific analysis and
inclusion in your science workflow. Marvin contains a
multimodal data access system that provides remote access to
MaNGA files or subdata contained within, downloads MaNGA
files to work with on the user’s local machine, and seamlessly
transitions between the two with a negligible change in syntax.

Existing 3d data cube visualizers in astronomy, as well as in
other scientific disciplines, often come as standalone desktop
applications designed to visualize and interact with individual
files local to a client machine. However, these tools are highly
specific, limited to exploring files one at a time, and still require
manually downloading all data locally. Although Marvin is a
tool for 3d cube visualization, its focus is on streamlined data
access from local or remote sources, with a clear separation of
components into browser-based visualization and program-
matic data tools, rather than on providing yet another desktop-
based cube viewer. Marvinʼs design allows for users to
rapidly explore and access the data in a manner of their
choosing, while still providing enough flexibility to, if desired,
plug the data into existing cube viewers available in the
astronomy community.

The components of Marvin are described in more detail in
the Marvin paper (Cherinka et al. 2019) as well as in the
Marvin documentation,116 which also contains tutorials and
example Jupyter notebooks. In addition, we briefly introduce
them below.

4.2.1. Marvin Web

Marvin Web provides quick visual access to the set of
MaNGA galaxies. It provides a dynamic, interactive, point-
and-click view of individual galaxies to explore the output from
the MaNGA DRP and DAP (Sections 4.1.1 and 4.1.2,
respectively), along with galaxy information from the NSA
catalog (Blanton et al. 2011).117

We show a screenshot of the View-Spectra page of Marvin
Web in Figure 5. By clicking anywhere within the galaxy IFU
bundle on the SDSS three-color image, or any Data Analysis
2D Map, the user can explore the spectrum at that location for
quick inspection. The visualized spectrum is interactive as well,
allowing panning and zooming.
Additional pages that Marvin Web provides are:

1. a Query page, for searching the MaNGA data set through
an SQL-like interface;

2. a Plate page, containing all MaNGA galaxies observed on
a given SDSS plate;

3. and an Image Roulette page, for randomly sampling
images of MaNGA galaxies.

Tutorials for navigating Marvin Web can be found
athttps://www.sdss.org/dr15/manga/manga-tutorials/
marvin-tutorial/marvin-web/.
Marvin Web is designed as a gateway to entry into real

MaNGA data, providing commonly desired functionalities all
in one location, as well as code snippets to help transition users
into a more programmatic environment using the Marvin
Tools.

4.2.2. The Marvin Tools

Marvin Tools provide a programmatic interaction with
the MaNGA data, enabling rigorous and repeatable science-
grade analyses. Marvin Tools come in the form of a Python
package that provides convenience classes and functions that
simplify the processes of searching, accessing, downloading,
and interacting with MaNGA data; selecting a sample; running
a user-defined analysis code; and producing publication-quality
figures.
Marvin Tools are a pip-installable product, packaged

under sdss-marvin, with full installation instructions at the
Marvin documentation website118 and the source code on
Github.119

Overall, Marvin Tools allow for easier access to the data
without knowing much about the data model, by seamlessly
connecting all of the MaNGA data products, eliminating the
need to micromanage a multitude of files. The user can do all of
their analysis from one interface.

4.2.3. Queries in Marvin

Both Marvin Web and Tools provide interfaces for
searching the MaNGA data set through a Structured Query
Language (SQL)-like interface, either via a web form or a
Python class. The Marvin Query system uses a simplified
SQL syntax that focuses only on a filter condition using
Boolean logic operators and a list of parameters to return. This
eliminates the need to learn the full SQL language and the

114 https://www.sdss.org/dr15/manga/marvin/
115 https://dr15.sdss.org/marvin
116 https://sdss-marvin.readthedocs.io/en/stable/

117 https://www.sdss.org/dr15/manga/manga-target-selection/nsa/
118 https://sdss-marvin.readthedocs.io/en/stable/installation.html
119 https://github.com/sdss/marvin
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detailed MaNGA database layout. With this query system,
users can make queries across the entire MaNGA sample using
traditional global galaxy properties (functionality to perform
intragalaxy queries using individual spaxel measurements is
planned for a future release). Tutorials for querying with
Marvin can be found for the web120 and for the tools.121

4.3. MaStar: A Large and Comprehensive Stellar Spectral
Library

Stellar spectral libraries are an essential tool for many fields
in astronomy. They are especially useful for modeling spectra
of external galaxies, including fitting for redshift and stellar
kinematics, fitting the continuum to isolate emission lines, and
calculating stellar population models (e.g., Leitherer et al.
1999; Bruzual & Charlot 2003; Maraston 2005; Conroy &
Gunn 2010; Vazdekis et al. 2010; Conroy 2013) to derive the
age, metallicity, and stellar mass of the stellar populations from
integrated light spectra. They are also useful for Galactic
astronomy and stellar astronomy. Although theoretical spectral
libraries have been substantially improved over the years, they
are still not realistic enough for certain stellar types (e.g., very
cold stars and carbon stars), due to the incomplete line list and
difficult-to-model physical effects, such as convection,

microturbulence, and deviations from plane-parallel geometry
and local thermodynamic equilibrium (non-LTE). Therefore,
empirical libraries are still needed for many applications and
for calibrating the theoretical models, provided one is able to
assign robust stellar parameters to the empirical spectra.
At the beginning of the MaNGA survey, there were no

empirical stellar libraries available covering the entire MaNGA
wavelength range with a spectral resolution that is equal to or
higher than that of MaNGA. Current state-of-the-art empirical
stellar libraries also have some other shortcomings. Some
libraries have issues with flux calibration or telluric subtraction.
Furthermore, all existing libraries have limited stellar parameter
space coverage, lacking sufficient sampling in especially cool
dwarfs, carbon stars, metal-poor stars, and very hot stars. They
also do not sufficiently sample the a[ /Fe] versus [Fe/H] space
(see Maraston & Strömbäck 2011 for a discussion of all these
problems). These issues prompted us to take advantage of a
parallel observing opportunity in SDSS-IV for assembling an
empirical stellar spectral library that samples a wider stellar
parameter space with a larger number of stars than any previous
library, and matches MaNGA’s wavelength coverage and
spectral resolution.
Included in this data release is the first version of the

MaNGA Stellar Library (MaStar). These observations are
performed by piggybacking on the APOGEE-2N observations
during bright time. MaNGA fiber bundles are plugged along
with APOGEE fibers into these APOGEE-led plates to observe

Figure 5. Screenshot of the galaxy maps view of Marvin Web for the MaNGA galaxy 12-193481 (Mrk 848). The SDSS three-color image of the galaxy is shown in
the top-left part of the figure. The upper-right panel shows the spectrum of the spaxel at the position (37, 37), which corresponds to the center of the bundle (shown by
the red dot). The maps show the (lower left) stellar kinematics, (lower middle) Hα emission-line flux, and (lower right) D4000 spectral index for this galaxy based on
its unbinned spectral data cube from the MaNGA DAP (see Section 4.1.2).

120 https://www.sdss.org/dr15/manga/manga-tutorials/marvin-tutorial/
marvin-web/
121 https://sdss-marvin.readthedocs.io/en/stable/query.html
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selected stars. As a result, the MaStar stellar spectra are
observed using exactly the same instrument as MaNGA
galaxies so they provide an ideal set of templates for modeling
stellar continuum and stellar populations in MaNGA galaxies.

The program has so far observed several thousands of stars,
each with several epochs of observation. The version we are
releasing in DR15 includes 8646 good quality spectra for 3321
unique stars, which cover a wide range in stellar parameter
space. The details of the target selection, data reduction, flux
calibration, and stellar parameter distribution are described by
Yan et al. (2018). Here we provide a brief summary.

4.3.1. Target Selection

Good target selection is essential to achieve wide sampling
of the stellar parameter space. We aim to cover the stellar
parameter space as completely as possible and sample it
roughly evenly. We base our selection primarily on existing
stellar parameter catalogs, including APOGEE-1 and -2
(Majewski et al. 2017), SEGUE (Yanny et al. 2009), and
LAMOST (Luo et al. 2015). Given the field plan of APOGEE-
2, we select all of the stars available in these catalogs in the
planned APOGEE-2 footprint. For each star, we count its
neighboring stars in stellar parameter space (Teff , glog , [Fe/H])
and assign it a selection weight that is inversely proportional to
its number of neighbors. The number of APOGEE-2 targeting
designs for each field is also taken into account. We then draw
our targets randomly in proportion to the normalized selection
weight. This method flattens the stellar parameter space
distribution and picks rare stars in those fields where they are
available.

In fields without stars with known stellar parameters, we use
spectral energy distribution (SED) fitting to search for hot and
cool stars to patch the stellar parameter distribution at the hot
and cool ends.

The targets are required to have g- or i-band magnitude
brighter than 17.5in order to achieve an S/N greater than
50 per pixel in 3 hr of integration, although not all fields have
the same integration time or the same number of visits. They
are also required to be fainter than 12.7 mag in both g- and i-
bands in order to stay below the saturation limit of the detector
for 15 minute exposures. We later lowered the saturation limit
to 11.7 to include more luminous stars, with a slight offset in
fiber placement for stars with magnitudes between 11.7 and
12.7. This slight offset does not affect our flux calibration due
to our unique calibration procedure.

These magnitude limits yield relatively few OB stars and
blue supergiants, as they have to be very distant or very
extincted to fall within this magnitude range. Therefore, we are
currently adjusting our exposure time in certain fields to expand
our parameter space distribution in the blue and luminous end.
The first version of the library does not have many such stars,
but we will improve on this for the final version, which we
expect to come out in the final SDSS-IV Data Release.

4.3.2. Observations

Observations for MaStar are obtained in a similar fashion to
the MaNGA observations except that they are conducted under
bright time and without dithering. Since we are piggybacking
on APOGEE-2, if APOGEE-2 visits a field multiple times, we
would obtain multiple visits for the stars on that plate as well.
Therefore, some stars have many visits and some stars have

only one visit. Each visit of APOGEE-2 is typically 67 minutes
long, which would allow us to take four 15 minute exposures,
unless interrupted by weather or other reasons. Each plate has
17 science targets and 12 standard stars, same as MaNGA. We
take flat and arc frames before each visit.

4.3.3. Data Reduction

The reduction of the MaStar data is handled by the MaNGA
DRP (see Section 4.1.1, Law et al. 2016). It has two stages. The
first stage processes the raw calibration frames and science
frames to produce the sky-subtracted, flux-calibrated, camera-
combined spectra for each fiber in each exposure. The second
stage differs between MaNGA galaxy data and MaStar stellar
data. For MaStar stellar data, we evaluate the flux ratios among
fibers in a bundle as a function of wavelength and constrain the
exact location of the star relative to the fiber positions. This
procedure helps us derive the light loss due to the finite fiber
aperture as a function of wavelength. This procedure takes into
account the profile of the PSF and the differential atmosphere
refraction. It is similar to how we handle flux calibration in
MaNGA data (Yan et al. 2016b). We then correct the spectra
for this aperture-induced light loss and arrive at the final flux-
calibrated stellar spectra. Comparison with photometry shows
that our relative flux calibration are accurate to 5% between the
g- and r-bands, and to 3% between r and i, and between the i
and z bands.
For each star, we combine the spectra from multiple

exposures on the same night and refer to these combined
spectra as “visit spectra.” We do not combine spectra from
different nights together for the same star, because they can
have different instrumental resolution vectors and some stars
could be variable stars. By summer 2017, we have obtained
17,309 visit spectra for 6042 unique stars. Because not all visit
spectra are of high quality, as we will discuss below, we
selected only those with high quality and present this subset as
the primary set to be released. The primary set contains 8646
visit spectra for 3321 unique stars.
The final spectra are not corrected for foreground dust

extinction. Users should make these corrections before
using them.

4.3.4. Quality Control

A stellar library requires strict quality control. We have a
number of quality assessments carried out in the pipeline to flag
poor-quality spectra. We identify cases having low S/N, bad
sky subtraction, high scattered light, low PSF-covering
fraction, uncertain radial velocity (RV) measurement, and/or
those with problematic flux calibration. Each spectrum we
release has an associated quality bitmask (MJDQUAL for each
visit spectrum) giving these quality information. We provide a
summary of these in Table 3 and describe them in more
detail here.
A large fraction of the observed stars have problematic flux

calibration due to the fact that the standard stars on those plates
have much less extinction than given by the Schlegel et al.
(1998, SFD) dust map. In the flux-calibration step of the
MaNGA pipeline, we assume that the standard stars are behind
the Galactic dust, and we compare the observed spectra of the
standard stars with the dust-extincted theoretical models to
derive the instrument throughput curve. This assumption is
valid for all galaxy plates that are at high Galactic latitude and
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have relatively faint standard stars, placing them at a safe
distance behind most of the dust. However, this assumption
fails for many fields targeted by MaStar, which are at low
Galactic latitudes. Stars at low Galactic latitude are quite likely
to be found in front of some fraction of the dust in that
direction. Thus, when applying the extinction given by SFD,
we overly redden the theoretical models and arrive at an
incorrect flux calibration for these fields. We have a solution to
this problem, which will be incorporated into the MaStar
pipeline in the future. In the current release, the spectra for
these stars are just flagged as having poor flux calibration (bit 5
of MJDQUAL).

A significant fraction of the spectra also have unreliable RV
estimates. We used a rather limited set of templates in our
derivation of the RVs. Thus, stars with very hot or very cool
effective temperature, and those with very high and low surface
gravity, are more likely to be affected by this issue. These can
be identified by checking bit 6 of the MJDQUAL bitmask. All
spectra are shifted to the rest frame according to the reported
heliocentric RV, regardless of whether the measurement is
robust or not.

In addition to these automated checks, we carried out a
visual inspection campaign to ensure the quality of each
spectrum. Using the Zooniverse Project Builder interface,122

we started a private project for visually inspecting the spectra.
A total of 28 volunteers from within the collaboration
participated in the campaign; 10,797 visit spectra were
inspected, each by at least three volunteers, to check for issues
in flux calibration, sky subtraction, telluric subtraction,
emission lines, etc. The results are input to the DRP to assign
the final quality flags.

The primary set of spectra we are releasing contains only
those spectra that are deemed to have sufficient quality to be
useful. We have excluded from the primary set those spectra
with problematic sky subtraction (bit 1 of MJDQUAL), low
PSF-covering fraction (bit 4), poor flux calibration (bit 5), or
low S/N (bit 9), and those identified as problematic by visual
inspection (bit 7). The primary set still contains spectra with
unreliable heliocentric velocity measurements (bit 6), whose
spectra would still be in the observed frame. It also contains
spectra with strong emission lines (bit 8), some of which are
intrinsic to the star. In addition, stars flagged to have high
scattered light in the raw frame (bit 2) are also included as they
may not be affected significantly. Other bits that are not
mentioned above were never set in the current data release. The
users are strongly advised to check the quality flags when using

the spectra. Detailed information about the quality flags can be
found in Yan et al. (2018).
In addition to these basic quality checks, we are testing the

spectra by running them through a population synthesis code
(Maraston 2005). This procedure, which will be described in C.
Maraston et al. (2019, in preparation), allows us to test the total
effect of the goodness of the spectra plus assigned stellar
parameters and will be crucial for the joint calculation of stellar
parameters and stellar population models. Relevant to this
description, this method allows us to spot bad or highly
extincted spectra.

4.3.5. Stellar Parameter Distribution

Robust assignment of stellar parameters to the stars are also
critical for the stellar library. Our targets are selected from
heterogeneous sources. Those selected from APOGEE,
SEGUE, and LAMOST have parameters available from their
respective catalogs. However, they are measured with different
methods and may not be consistent with each other. They also
have different boundaries applied in the determination of the
parameters. For our target selection purposes, we have made
small constant corrections to the parameters to remove the
overall systematic difference. These slightly adjusted para-
meters are included in the catalog we release. However, the
corrections are done independent of detailed stellar types. As a
result, the parameters from different catalogs can still have
subtle stellar-type-dependent systematic differences. For indi-
vidual stars, they could be used to determine the rough stellar
type. But for the library as a whole, we caution against using
these input parameters to compare the stars or to construct
stellar population models with them.
We are still in the process of determining stellar parameters

for all stars in the MaStar library in a way that is as
homogeneous as possible. This is not an easy task, because for
stars with different stellar types, we need to rely on different
spectral features and different methodologies. Although these
are not yet available in this version of the library, we present
here the extinction-corrected Hertzsprung–Russell (HR) dia-
gram for our stars using photometry and parallax from Gaia
DR2 (Evans et al. 2018; Gaia Collaboration et al. 2018) and
Gaia-parallax-based distance estimates from Bailer-Jones et al.
(2018). This provides a rough idea of our stellar parameter
coverage. Here we only plot stars that are either in directions
with a total E B V-( ) less than 0.1 mag or more than 300 pc
above or below the Milky Way midplane so that we can use the
total amount of dust measured by Schlegel et al. (1998) for the
extinction correction reliably. The photometry of our targets
also come from various sources, including PanSTARRS1
(Chambers et al. 2016), APASS,123 SDSS, Gaia DR1 (Gaia
Collaboration et al. 2016), and Tycho-2 (Høg et al. 2000) for a
few stars. For stars with PanSTARRS1 photometry, we
converted them to SDSS using the formula provided by
Finkbeiner et al. (2016). For APASS, we assumed that they are
in SDSS filters already. For all of the other non-SDSS stars, we
use Gaia DR2 photometry to derive the magnitudes in SDSS
gri bands according to the conversion given by Evans et al.
(2018). In Figure 6, we show the r-band absolute magnitude
(Mr) versus g−i for these stars. The color-coding is based on
our preliminary measurement of metallicity using the ULySS

Table 3
Quality Control Bits MJDQUAL for MaStar. See Section 4.3.4 for a Full

Explanation

Bit Description

1 Problematic sky subtraction
2 High scattered light in the raw frame
4 Low PSF-covering fraction
5 Poor flux calibration
6 Unreliable radial velocity estimates
7 Flagged as unreliable from visual inspection
8 Strong emission lines
9 Low S/N

122 https://www.zooniverse.org/lab 123 https://www.aavso.org/apass
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pipeline (Koleva et al. 2009, 2011) with MILES (Sánchez-
Blázquez et al. 2006) as the training set.

From Figure 6, we can see that the current released subset of
the MaStar library already has a very good coverage across the
HR diagram for a wide range of metallicities. But there is
significant room for improvement. We need to cover more stars
at the luminous end of the red giant branch (RGB) and at the
blue end of the main sequence. These will be added in future
versions of the library.

4.3.6. Data Access and Usage Information

The MaStar data for this release can be found in two main
files: the “mastarall” and the “mastar-goodspec” files.
Both files can be found on the SAS(https://dr15.sdss.org/
sas/dr15/manga/spectro/mastar/v2_4_3/v1_0_2/, with data
models athttps://internal.sdss.org/dr15/datamodel/files/
MANGA_SPECTRO_MASTAR/DRPVER/MPROCVER/.

The “mastarall” file contains four summary tables of the
basic information about the stars and of the information about
one or more of their visits. They include the identifier
(MaNGAID), astrometry, photometry, targeting bitmask indi-
cating source of photometry, input stellar parameters, plate,
IFU, modified Julian date of the visit, derived heliocentric
velocity, and spectral quality information. MaNGAID is the
identifier to identify unique stars, except in a few cases where
the same star was assigned two different MaNGAIDs. These
are documented in detail online and in Yan et al. (2018).

The “mastar-goodspec” file contains the primary set of
high-quality visit spectra. In addition to identification informa-
tion, we provide the wavelength, flux, inverse variance, mask,
spectral resolution vector, and the spectral quality bitmask.

MaStar spectra can also be visualized in SAW (see Section 3
for details).

4.4. Other Ancillary Programs

We refer the reader to the DR13 paper (Albareti et al. 2017)
for the most complete list of MaNGA ancillary programs.124

These approved programs make use of ∼5% of the MaNGA
bundles, and we provide in Table 4 an updated list of the
number of bundles available in each documented sample.
There are three new ancillary programs for DR15. These

provide observations in the fields of IC 342 and M31 as well as
data for a selection of SN1a hosts (MANGA TARGET3 target
bits 20, 21, and 26, respectively).
The IC 342 program will uniformly mosaic the disk of IC

342 using 61 plates, following an initial pilot program of three
plates that target individual H II regions across the disk. This
galaxy serves as a local reference with 30 pc resolution that can
inform our understanding of the unresolved physics in the
∼1 kpc resolution main MaNGA survey.
The M31 ancillary program targets regions in M31 where the

underlying physical properties are well constrained from
resolved stellar population analyses, provided by the Panchro-
matic Hubble Andromeda Treasury (PHAT; Dalcanton et al.
2012). The MaNGA observations include 18 regions
(50–100 pc in size) that sample a wide range of environmental
conditions, including ancient and recent star formation history,
dust column, dust geometry, and metallicity. These observa-
tions provide a link between resolved stellar populations and

Figure 6. Extinction-corrected HR diagram for MaStar targets, color-coded by
our preliminary measurement of metallicity. The g-, r-, and i-bands are in the
SDSS photometry system. The absolute magnitudes are derived using parallax-
based distance estimates from Bailer-Jones et al. (2018). Only stars for which
we are able to get an approximate extinction correction are included here. This
figure is reproduced from Yan et al. (2018).

Table 4
Summary of MaNGA Ancillary Programs with Data in DR15

Ancillary Program Observeda BITNAME
Binary
Digit

Luminous AGNs 25c AGN_BAT 1
AGN_OIII 2
AGN_WISE 3
AGN_PALOMAR 4

Void Galaxies 3 VOID 5
Edge-On Star-forming
Galaxies

20 EDGE_ON_WINDS 6

Close Pairs and Mergers 57d PAIR_ENLARGE 7
PAIR_RECENTER 8
PAIR_SIM 9
PAIR_2IFU 10

Writing MaNGA (public
outreach)

1 LETTERS 11

Massive Nearby Galaxies 23 MASSIVE 12
Milky Way Analogs 4 MWA 13

0 MW_ANALOG 23
Dwarf Galaxies in
MaNGA

22 DWARF 14

Brightest Cluster Galaxies 24 BCG 17
MaNGA Resolved Stellar
Populations

1 ANGST 18

Coma 68 DEEP_COMA 19
IC 342 50 IC 342 20
M31 18 M31 21
SN Ia Hosts 1 SN1A_HOST 26

Notes.
a These are bundle counts, not always unique galaxies.
b Count for 1, 2, 3, 4 combined.
c Count for 7, 8, 9, 10 combined.

124 Also see http://www.sdss.org/dr15/manga/manga-target-selection/
ancillary-targets.
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the inferred properties of unresolved stellar populations, and
can be used to assess the ability of spectral fitting codes to
recover key physical parameters.

The SN Ia Hosts ancillary program will observe SN Ia host
galaxies to investigate causes of the intrinsic variation of SNe
Ia. SNe Ia show a spread in absolute magnitude, but can be
standardized by taking into account relationships like lumin-
osity-decline rate and SN Ia color to reduce the spread to 0.12
mag. Research over the past several years indicates that some
of this remaining spread correlates with global host galaxy
properties such as stellar mass, star formation history, and
metallicity (e.g., Lampeitl et al. 2010; Gupta et al. 2011;
Hayden et al. 2013; Rigault et al. 2013), causing concerns
about biases in cosmological measurements. This project will
obtain MaNGA data for roughly 40 SN Ia host galaxies in order
to look for correlations with SN Ia peak absolute magnitude
and host galaxy properties like metallicity and star formation
rate averaged over the whole galaxy and at the location of the
SN Ia.

DR15 also incorporates a second Milky Way Analogs
program (target bit 23), which is similar to the existing program
described in DR13, but uses morphological information, rather
than star formation rates, in combination with galactic stellar
mass to select analogs.

4.5. Value Added Catalogs

As was the case previously in DR14, there are a large
number of VACs linked to MaNGA data released in DR15.
These either represent additional processing of DRP or DAP
output, or follow-up programs or other data useful in
combination with MaNGA data. We summarize new or
updated VACs below.

4.5.1. Spectral Modeling

In DR15, there are new releases for both the FIREFLY
(Goddard et al. 2017a) and Pipe3D (Sánchez et al. 2016)
stellar population modeling and emission-line analysis VACs.
Full details of both can be found in the DR14 paper (and
references therein), so we give only updates specific to this
DR15 release version below.

For DR15, Pipe3D version 2.4.3 was run over the MaNGA
DR15 data set. The main difference with respect to version
2.1.2 (used in DR14), besides the number of analyzed galaxies,
was to solve a bug in the derivation of the equivalent widths of
the analyzed emission lines. The current Pipe3D VAC
provides two different types of data products: (1) a catalog
comprising 94 different parameters measured for each of the
4660 galaxies (all galaxies in MaNGA cubes for which
Pipe3D was able to derive the main stellar population,
emission-line, and kinematics properties), and (2) a set of 4660
data cubes manga.Pipe3D.cube.fits presenting a set of
spatially resolved parameters. The parameters are the same as
they were in the DR14 version (Sánchez et al. 2018). More
details are available on the data release website,https://www.
sdss.org/dr15/manga/manga-data/manga-pipe3d-value-
added-catalog/.

The major update to FIREFLY with respect to DR14 is the
extension of the stellar population modeling grid based on the
models of Maraston & Strömbäck (2011). The new catalog
uses a finer metallicity grid with the following grid values: [Z/
H] = −2.3, −1.9, −1.6, −1.2, −0.9, −0.6, −0.3, 0.0, and 0.3.

The new version of the VAC also provides geometrical
information so that maps can be produced directly from the
VAC (a Python plotting routine is available from the data
release website). The entire VAC is available as either a single
FITS file containing all measurements or smaller FITS files
with selected subsets of the derived parameters. More detail on
the catalog is provided on the data release website, https://
www.sdss.org/dr15/manga/manga-data/manga-firefly-value-
added-catalog/, and in Goddard et al. (2017a) and Parikh et al.
(2018).

4.5.2. Morphology and Photometry of MaNGA Targets

As part of DR15, we release one photometry VAC and two
morphology VACs.
The PyMorph catalog provides photometric parameters

obtained from Sérsic and Sérsic+Exponential fits to the 2D
surface brightness profiles of the MaNGA DR15 galaxy
sample. It uses the PyMorph algorithm, which has been
extensively tested, to determine the fits (Meert et al. 2013;
Bernardi et al. 2017; Fischer et al. 2017), and PyMorph
reductions of SDSS DR7 galaxies (Abazajian et al. 2009) are
available (the UPenn SDSS PhotDec Catalog; Meert et al.
2015, 2016). We have re-run PyMorph for all galaxies in the
MaNGA DR15 sample. These re-runs incorporate three
improvements: they use the SDSS DR14 images, improved
bulge-to-disk decomposition by slightly modifying our criteria
when using PyMorph (see Fischer et al. 2018. for details), and
all of the fits in this catalog have been visually inspected for
additional reliability (we recommend using “flag_fit”). The
catalog contains these fits for the g-, r-, and i-bands. One
important caveat to note is that position angles (PAs) are
reported relative to the SDSS imaging camera columns, which
are not aligned with north, so a correction is needed to convert
to true PAs. To convert to the usual convention, where north is
up, east is left (note that the MaNGA data cubes have north up,
east right) set PA 90 PA PAMaNGA PyMorph SDSS=  - - , where
PAPyMorph is the value given in this catalog, and PASDSS is the
SDSS camera column position angle with respect to north.
A curated version of the Galaxy Zoo crowdsourced

classifications containing an entry for all MaNGA target
galaxies is released in DR15. This catalog contains galaxy
classifications previously released in Willett et al. (20013,
which was selected from the SDSS DR7 galaxy catalog), as
well as new unpublished classifications for MaNGA targets
missing from that list. All morphological identifications are
provided based on the citizen scientist input using the improved
technique for aggregation and debiasing described in Hart et al.
(2016). This accounts better for redshift bias in the detailed
classifications of spiral arms, bars than the version used in
Willett et al. (2013). For a simple conversion between Galaxy
Zoo classifications and modern (bulge-sized based) T-types,
see details in Willett et al. (2013), which also includes general
advice on how to best use Galaxy Zoo classifications for
science.
A second morphology catalog that has been obtained with

the help of “Deep Learning” models is provided. The models
were trained (making use of Galaxy Zoo morphologies, as well
as morphologies from Nair & Abraham 2010) and tested on
SDSS DR7 images (Domínguez Sánchez et al. 2018). The
morphological catalog contains a series of Galaxy-Zoo-like
attributes (edge-on, barred, bulge prominence and roundness),
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as well as a T-Type and a finer separation between pure
elliptical and S0 galaxies.

4.5.3. H I-MaNGA—H I 21 cm Follow-up for MaNGA

The first data release of “H I-MaNGA,” the H I follow-up
project for MaNGA, is provided as a VAC in DR15. This
follow-up program is presented in Masters et al. (2018) and is
the result of single-dish radio 21 cm H I observations of
MaNGA galaxies using the Robert C. Byrd Green Bank
Telescope (GBT). The depth of this observing is aimed to be
similar to the Arecibo Legacy Fast Arecibo L-band Feed Array
(ALFALFA) blind H I survey (Haynes et al. 2018), which
covers some of the MaNGA footprint (see Figure 2), with a
goal of enabling studies to use H I data from both surveys. In
this first release, data are provided for 331 MaNGA galaxies
observed in the 2016 GBT observing seasons under project
code AGBT16A_95. Total H I masses and line widths
(measured with five different common techniques) are provided
for all detections, while H I mass upper limits (assuming a line
width of 200 km s−1) are provided for non-detections. H I-
MaNGA has observed an additional ∼2000 MaNGA galaxies
in the 2017 observing season (under project code
AGBT17A_12); these data will be released in a future VAC.
The sky distribution of all MaNGA galaxies observed by this
program is shown in Figure 2.

4.5.4. GEMA-VAC; Galaxy Environment for MaNGA VAC

The environment in which a galaxy resides plays an
important role in its formation and evolution. Galaxies evolve
as a result of intrinsic processes (i.e., their nature—this includes
processes such as internal secular evolution, feedback of
various kinds etc.), but they are also exposed to the influences
of their local and large-scale environments (i.e., how they are
“nurtured”). We present the Galaxy Environment for MaNGA
Value Added Catalog (GEMA-VAC), which provides a
quantification of the local and large-scale environments of all
MaNGA galaxies in DR15. There are many different defini-
tions of environment, and there are also several ongoing
projects within the MaNGA team exploring the influence the
environment has on galaxy properties. With this VAC, we aim
to join and coordinate efforts so that the entire astronomical
community can benefit from the products. The GEMA-VAC
catalog will be described in more detail in M. Argudo-
Fernández et al. (2019, in preparation). We describe the
contents of the VAC briefly below.

We estimate the tidal strength parameter for MaNGA
galaxies in pairs/mergers (B. Hsieh et al. 2019, in preparation),
the tidal strengths exerted by galaxies in the catalog of galaxy
groups in Yang et al. (2007), and tidal forces exerted by nearby
galaxies in two different fixed-aperture volume-limited samples
(namely 1 and 5Mpc projected distances within a line-of-sight
velocity difference of v 500D km s−1; Argudo-Fernández
et al. 2015). Estimations of the local densities with the distance
to the fifth nearest neighbor are also provided. The local density
within the N nearest neighbors includes the corrections
explained in Goddard et al. (2017b) following the methodology
described in Etherington & Thomas (2015). To have a more
general picture of the environment, we also provide a
characterization of the cosmic web environment, which can
be used to identify galaxies in clusters, filaments, sheets, or
voids, as explained in Zheng et al. (2017). The full details of

the reconstruction of these density and tidal fields are described
in Wang et al. (2009, 2012).

4.5.5. MaNGA Spectroscopic Redshifts

We present a VAC that contains the best-fit spectroscopic
redshift and corresponding model flux for each MaNGA
spectrum that has sufficient S/N. We provide the mean of the
spectroscopic redshifts sampled within the inner high-S/N
region of the MaNGA galaxies, which can be compared to the
single-valued NSA catalog redshift. Since the MaNGA
instrument uses the BOSS spectrograph, our results are derived
by iterative application of the BOSS pipeline’s spec1d software
(Bolton et al. 2012) to precisely measure the redshift using the
higher S/N measurements as a prior to the algorithm, which
allows us to determine good redshifts on spectra that would not
otherwise have sufficient S/N to result in a good redshift. Since
the MaNGA survey uses an IFU, the RV profile of the galaxy
can significantly impact the redshift of each spectra. Thus, the
spectroscopic redshifts can both be a benefit to galaxy
kinematic measurements and improve the accuracy of spectra
modeling and analysis. The authors of this VAC have used the
spectroscopic redshifts to search for background emission lines
to discover strong gravitational lenses in MaNGA (Talbot et al.
2018).

5. Other Survey Data and Products

5.1. APOGEE-2

SDSS DR15 includes no new APOGEE data. The currently
available set of APOGEE Survey data consists of the first two
years of SDSS-IV APOGEE-2 (2014 July–2016 July) as well
as the entirety of SDSS-III APOGEE-1 (2011 August–2014
July) and is an exact duplicate of that data, which was released
in DR14. DR15-associated APOGEE documentation builds
upon that from DR14, with extended explanations and the
addition of information and relevant text (e.g., a description of
the New Mexico State University (NMSU) 1.0 m Telescope).
Note that the DR15 APOGEE data model has remained largely
the same with only slight revisions to the text for clarity.
Described below are the APOGEE technical papers that contain
details which should assist users in the exploitation of
APOGEE data as well as provide further understanding as to
data quality (Zasowski et al. 2017; Holtzman et al. 2018;
Jönsson et al. 2018; Pinsonneault et al. 2018; Wilson et al.
2018). Additionally, details are provided on the recently
generated VAC from Donor et al. (2018), which contains a
catalog of identified APOGEE open cluster members. There are
currently four VACs that rely upon APOGEE DR14 in order to
extend and enhance the standard APOGEE data release
products (DR14 APOGEE TGAS Catalog, APOGEE Red
Clump Catalog, APOGEE DR14 Based Distance Estimations,
and OCCAM).125

5.1.1. Technical Papers

Two new APOGEE-related technical papers are highlighted
below: the instrument paper from Wilson et al. (2018), which
relays an extensive description of the APOGEE spectrographs,

125 More information regarding all available APOGEE VACs including brief
descriptions and the corresponding authors may be found in the SDSS online
documentation (http://www.sdss.org/dr15/data_access/value-added-
catalogs/).
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and the APOKASC paper from Pinsonneault et al. (2018),
which details the APOGEE spectroscopic follow-up of Kepler
stars.

APOGEE Instrument Paper. The publication from Wilson
et al. (2018) describes the design and performance of the near-
infrared, fiber-fed, multiobject, high-resolution APOGEE
spectrographs. The first APOGEE instrument has been in
operation on the 2.5 m Sloan Telescope at the Apache Point
Observatory in New Mexico, USA, since 2011 (a northern
hemisphere site). Several key innovations were made during
the development of the APOGEE instrument, which include a
multifiber connection system known as a “gang connector,”
which allows for the simultaneous disconnection and reconnec-
tion of 300 fibers; hermetically sealed feedthroughs to permit
fibers to pass through the cryostat wall continuously; the first
cryogenically deployed mosaic volume phase holographic
grating; and a massive refractive camera that comprising
large-diameter monocrystalline silicon and fused silica ele-
ments. Specifically for the northern spectrograph, Wilson et al.
(2018) report on the following: the performance of the 2.5 m
Sloan Foundation Telescope in the near-infrared wavelength
regime, the cartridge and fiber systems, the optical and
optomechanical systems, the detector arrays and electronic
controls, the cryostat, the instrument control system, calibration
procedures, instrument optical performance and stability, and
lessons learned. The final sections of Wilson et al. (2018)
provide similar details on the second APOGEE
spectrograph located at the 2.5 m du Pont Telescope at LCO
in Chile. This second (southern hemisphere-based) instrument,
a close copy of the first, has been operating since 2017 April.
Wilson et al. also contains multiple appendices for the
interested user.

The Second APOKASC Catalog. Over both the APOGEE-1
and APOGEE-2 Surveys, a joint effort known as the APOGEE
Kepler Asteroseismic Science Consortium (APOKASC),
APOGEE has engaged in a spectroscopic follow-up of stars
in the Kepler field. Pinsonneault et al. (submitted) present the
second APOKASC Catalog of stellar properties for a sample of
6681 evolved stars with APOGEE spectroscopic parameters
and Kepler asteroseismic data analyzed using five independent
techniques. The APOKASC data include the evolutionary state,
surface gravity, mean density, mass, radius, and age, and the
spectroscopic and asteroseismic measurements used to derive
them. As shown in Figure 7, the APOKASC catalog
asteroseismic log g values and evolutionary state classifications
allow for a clear distinction between RGB and red clump (RC)
members. Pinsonneault et al. (2018) employ a new empirical
approach for combining asteroseismic measurements from
different methods, calibrating the inferred stellar parameters,
and estimating uncertainties. With high statistical significance,
they find that asteroseismic parameters inferred from the
different pipelines have systematic offsets that are not removed
by accounting for the differences in their solar reference values.
Pinsonneault el al. include theoretically motivated corrections
to the large frequency spacing ( nD ) scaling relation as well as
calibrates the zero point of the frequency of maximum power
( maxn ) relation to be consistent with masses and radii for
members of star clusters. For most targets, the parameters
returned by different pipelines are in much better agreement
than would be expected from the pipeline-predicted random
errors, but 22% of them had at least one method not return a
result and a much larger measurement dispersion. This supports

the usage of multiple analysis techniques for asteroseismic
stellar population studies.
In the SDSS DR14 data release paper (Abolfathi et al. 2018),

brief references were made to the Holtzman et al. (2018) and
Jönsson et al. (2018) publications. For the benefit of users,
concise descriptions of each are now provided. Please note that
in addition to the DR15 documentation, users should refer to
these publications for detailed information regarding the Data
Reduction Pipeline (DRP) and the APOGEE Stellar Parameter
and Chemical Abundance Pipeline (ASPCAP), as well as to
understand data quality and performance.
SDSS/APOGEE DR13 and DR14 Pipeline Processing and

Data Description. Holtzman et al. (2018) describe the data and
analysis methodology used for the SDSS/APOGEE Data
Releases 13 and 14, as well as highlight differences from the
DR12 analysis presented in Holtzman et al. (2015). For
example, the work demonstrates some improvement in the
handling of telluric absorption and persistence in the DR13/
DR14 versions of APOGEE-2 data as opposed to DR12.
Holtzman et al. (2018) detail the derivation and calibration of
stellar parameters, chemical abundances, and respective
uncertainties, along with the ranges over which calibration
was performed. The work reports some known issues with the
public data related to the calibration of the effective

Figure 7. Spectroscopic effective temperature (from APOGEE DR14) vs.
asteroseismic surface gravity (log g) in the APOKASC sample by asteroseismic
evolutionary state. Red clump (RC; core He-burning) stars are signified in blue
while red giant branch (RGB; H-shell or double shell burning) stars are shown
in red. The two populations have a clear offset in this plot, with RC stars
having higher surface gravity at the same temperature compared to RGB stars.
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temperatures (DR13), surface gravity (DR13 and DR14), and C
and N abundances for dwarfs (DR13 and DR14). Holtzman
et al. (2018) also discuss how results from The Cannon (Ness
et al. 2015) are included in DR14 and compare those with the
values from ASPCAP.

Comparison of SDSS/APOGEE DR13 and DR14 Values to
Optical Results. Jönsson et al. (2018) evaluate the ASPCAP
performance for both the DR13 and DR14 APOGEE data sets
with 160,000 and 270,000 stars, respectively. A comparison of
the ASPCAP-derived stellar parameters and abundances to
analogous values inferred from optical spectra and analysis
with a subset of several hundred stars is done. For most
elements, Jönsson et al. (2018) find that the DR14 ASPCAP
results have systematic differences with the comparison
samples of less than 0.05 dex (median) and random differences
of less than 0.15 dex (standard deviation). These departures are
attributed to a combination of uncertainties in both the
comparison samples as well as the ASPCAP analysis.
Specifically, in comparison to the optical data, Jönsson et al.
(2018) find that magnesium is the most accurate alpha-element
derived by ASPCAP while nickel is the most accurate Fe-peak
element (excluding iron).

Additionally, in Abolfathi et al. (2018), detailed information
was provided regarding the recently published APOGEE-2
Targeting Paper from Zasowski et al. (2017). Users are
encouraged to consult Zasowski et al. for specific details and
insight regarding APOGEE-2 targeting.

5.1.2. New VAC—OCCAM

The Open Cluster Chemical Analysis and Mapping
(OCCAM) Survey generates a VAC of open cluster members
as targeted in both APOGEE-1 and APOGEE-2 fields. To
establish membership probabilities, the catalog combines
APOGEE DR14 DRP-derived RVs and ASPCAP-derived
metallicities with proper motion (PM) data from Gaia DR2.
This first VAC from the OCCAM Survey includes 19 open
clusters, each with four or more APOGEE members. The
OCCAM VAC consists of two components: a set of bulk
cluster properties, which include motions (RV, PM) as well as
robust average element abundance ratios, and a set of
membership probabilities for all stars considered in the analysis
of the 19 open clusters. For further information on the OCCAM
Survey, please consult Donor et al. (2018).

5.2. eBOSS, TDSS, and SPIDERS

There are no new reduced eBOSS data included in this data
release; the VACs released are based on previously released
eBOSS spectra. The final eBOSS spectroscopic sample will be
released in DR16. For more details on what is coming in DR16,
see Section 6.1.

DR14 marked the first cosmological sample from eBOSS,
consisting of spectra predominantly of luminous red galaxies
(LRGs) and quasars. These data enabled the first baryon
acoustic oscillation (BAO) measurement in the z1 2< <
redshift range from quasars (Ata et al. 2018) and a 2.6%
precision constraint on the distance scale using the clustering of
LRGs (Bautista et al. 2018). These measurements reflect the
two primary goals for early eBOSS science, yet are only a
subset of the results from the two-year eBOSS sample. The
large-scale structure catalogs for both of these studies were
released in 2018 July and were not described in the 14th Data

Release publication. These VACs can now be accessed from
the DR14 site126 and from this new release in a parallel
location. These catalogs contain all necessary information such
as the window function, systematic quantities, completeness
estimates, and corrections for close pairs and redshift failures to
reproduce those clustering measurements, similar to the
catalogs from the final BOSS sample (Reid et al. 2016).
The publications that document the DR14 target selection

algorithms (Myers et al. 2015; Palanque-Delabrouille et al.
2016; Prakash et al. 2016) will also describe the LRG and
quasar samples for the final eBOSS sample. Several new
algorithms for spectroscopic data reductions were implemented
in DR14 (Jensen et al. 2016; Hutchinson et al. 2016); we will
further improve sky subtraction with higher order models to the
fiber-to-fiber sky model, flux calibration with new models for
standard stars, and spectral extraction to account for cross-talk
such as that found in Hemler et al. (2018, submitted) for the
final sample. A new method to improve the classification of
galaxy spectra (Hutchinson et al. 2016) was implemented in
DR14, and new methods for classifying emission-line galaxies
(ELGs) and quasars are being considered for the final sample.

5.3. Optical Emission-line Properties and Black Hole Mass
Estimates for SPIDERS DR14 Quasars

This VAC, released in DR15, contains optical spectral
properties for all X-ray-selected SPIDERS quasars released in
DR14. The SPIDERS DR14 catalog is based on a clean sample
of 9399 sources from the Second ROSAT All-Sky Survey
catalog (2RXS; Boller et al. 2016) and 1413 sources from the
first XMM-Newton Slew survey catalog (XMMSL1; Saxton
et al. 2008) with optical spectra available. X-ray sources were
matched to ALLWISE infrared counterparts using the Bayesian
algorithm “NWAY” (Salvato et al. 2018), which were then
spectroscopically identified using SDSS (Dwelly et al. 2017).
Visual inspection results for each object in this sample are
available from a combination of literature sources and the
SPIDERS group, which provide both reliable redshifts and
source classifications. A spectral fitting code, which fits the
spectral regions around the Hβ and MgII emission lines and
provides both line and continuum properties, bolometric
luminosity estimates, as well as single-epoch black hole mass
estimates, has been produced. This VAC includes X-ray flux
measurements, visual inspection results, optical spectral
properties, black hole mass estimates, and additional derived
quantities for all SPIDERS DR14 quasars. For more details, see
Coffey et al. (2018).

6. Future Plans

SDSS-IV has a full two years of operations remaining and is
planning a further two public data releases. The next data
release, DR16, is now scheduled for 2019 December and will
comprise data taken by both the APOGEE-N and APOGEE-S
instruments through 2018 July as well as being the final
complete data release for eBOSS operations. The final,
complete release, DR18 (which will follow an internal only
DR17) is planned for 2020 December.

126 https://data.sdss.org/sas/ebosswork/eboss/lss/catalogs/DR14/
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6.1. eBOSS

The eBOSS schedule was recently accelerated in order to
achieve its cosmological goals earlier than previously planned.
This acceleration began on 2018 January 1 and continues
through 2019 February 16, at which time eBOSS will complete
its program significantly ahead of the start of the Dark Energy
Spectroscopic Instrument (DESI) survey (DESI Collaboration
et al. 2016). Under the original schedule, eBOSS and MaNGA
divided the dark time roughly equally. Under the new schedule,
eBOSS controlled all of the dark time in 2018 January and
February, we returned to the original shared schedule for 2018
March through July, and eBOSS controlled all of the dark time
in 2018 from August through 2019 February 16.

The final data sample will include the spectra from
observations covering 302 ELG plates that define the complete
ELG sample following the selection algorithms in Raichoor
et al. (2017). The final LRG and quasar samples will cover a
volume roughly 2.3 times larger than the two-year cosmology
samples released and analyzed in DR14.

The final eBOSS sample will enable precision measurements
of BAO in the clustering of galaxies, quasars, and the Lyα
forest. The final sample will also enable new measurements of
redshift space distortions in the anisotropic clustering of
galaxies and quasars over the redshift range z0.6 2.2< < .
The next data release has been scheduled around the expected
time that these analyses will be completed. This data release
will be the last to include new eBOSS data. Also included will
be the VACs that will allow others to reproduce the final
cosmology measurements.

6.2. SPIDERS

At the completion of the eBOSS survey, SPIDERS will have
only obtained spectra from the ongoing follow-up program of
ROSAT and XMM-Newton sources. Continuing at the current
pace, at the end of the survey, SPIDERS will have collected
about 12,000 new spectra of X-ray-selected AGNs and 40,000
spectra of member galaxies of about 5000 clusters over the final
eBOSS area.

The delayed launch of the eROSITA satellite (Predehl et al.
2014), combined with the accelerated program for obtaining
eBOSS spectra, means that it will not be possible to obtain
redshifts for eROSITA targets during routine eBOSS opera-
tions. The eROSITA Performance Verification data set is
currently planned to be available by early to mid-2019 and
should consist of 120 deg2, with 100–140 targets per deg2. To
address at least part of the original goals of SPIDERS involving
eROSITA follow-up, we plan to dedicate a special set of 12
plates for these targets; however, this plan cannot be confirmed
until 2019 February.

6.3. TDSS

The accelerated pace for eBOSS discussed above corre-
spondingly accelerates TDSS, which also relies on the BOSS
spectrographs, using a small portion (about 5%) of the optical
fibers piggybacking on eBOSS plates. TDSS observations will
thus effectively also conclude with eBOSS data collection in
about 2019 mid-February, and with SDSS-IV/TDSS data to be
included in the future DR16. Although all three main
components of TDSS—the optical spectroscopic follow-up of
PS1 photometric imaging variables (e.g., see Morganson et al.
2015; Ruan et al. 2016), repeat Few-Epoch Spectroscopy (FES)

of selected subclasses of stars and quasars anticipated or
suspected to reveal spectroscopic variability (e.g., see MacLeod
et al. 2018), and the more recently initiated TDSS Repeat
Quasar Spectroscopy (RQS; also see MacLeod et al. 2018)
program—thereby also have been accelerated toward comple-
tion, in practice this advance is such that SDSS-IV data
collection for the TDSS RQS program in particular is now
nearing completion.127 The TDSS RQS program obtains
multiepoch spectra for thousands of known quasars (and with
a larger sample size and greater homogeneity and less a priori
bias toward specific quasar subclasses than the TDSS FES
programs), all of which have at least one earlier epoch of SDSS
spectroscopy already available in the SDSS archive. The RQS
program specifically addresses quasar spectral variability on
multiyear timescales, and in addition to its own potential for
new discoveries of phenomena, such as changing-look quasars
or broad absorption line (BAL) variability and others, will also
provide a valuable (and timely) resource for planning yet larger
scale multiepoch quasar repeat spectral observations antici-
pated for the Black Hole Mapper program in the future SDSS-
V (see Section 6.6 below). From data taken for the RQS SDSS-
IV program to date, we expect RQS to add another recent
epoch of spectroscopy for ∼16,000 SDSS quasars, sampling
across a broad range of properties including redshift,
luminosity, and quasar subclass type.

6.4. MaNGA

MaNGA will continue to take observations for the next two
years of SDSS-IV operations. The time trade with eBOSS has
slowed the rate of observations during 2018; however, it will
provide an overall increase in the total observing time
allocation for MaNGA by 8%. The projected final survey
footprint, assuming we continue nominal survey operations
through 2020 July, is shown for two different expectations of
weather at the telescope and overlaid on other relevant surveys
in Figure 2. We expect to exceed our original goal of 10,000
galaxies slightly under nominal weather conditions.

6.5. APOGEE-2

The APOGEE-2 Survey continues to acquire observations
from both the northern and southern hemispheres. SDSS-IV
Data Release 16 will contain the first APOGEE-2 data from the
southern instrument. For DR16, a variety of improvements are
planned to both the DRP and the APOGEE Stellar Parameters
and Chemical Abundance Pipeline (ASCAP). A new atomic
line list will be generated (which will include transitions of
Ce II and Nd II), and a new molecular list will be assembled
(which will be more extensive in size and will incorporate FeH
features). An expansion of the stellar atmosphere model grid is
underway, which will entail the inclusion of higher surface
gravities, lower carbon abundances, and higher nitrogen
abundances. Note that Model Atmospheres in Radiative and
Convective Scheme (MARCS128) models (Gustafsson et al.
2008) will be employed for both the M and GK grids, ensuring
a smooth transition across an effective temperature range of
approximately Teff =2500–6000 K. Additionally, some tweak-
ing of the data processing and derivation procedure will occur.
Planned modifications include the improvement of the LSF

127 This is primarily just because RQS piggybacks on a subset of eBOSS
plates, which received recent heavy emphasis.
128 http://marcs.astro.uu.se
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determination (with the potential employment of on-the-fly
LSF derivation), a better methodology for the extraction of the
individual element abundances, and an improved technique for
filling holes in the stellar atmosphere model grid.

6.6. SDSS-V

Preparations for the fifth generation of SDSS are underway,
with SDSS-V anticipated to begin operations in 2020
(Kollmeier et al. 2017). SDSS-V will collect data at both
APO and LCO using the existing APOGEE and BOSS
spectrographs on the 2.5 m telescopes, as well as new optical
spectrographs dedicated to IFS on new smaller telescopes. The
current SDSS plugplate system will be replaced with robotic
fiber positioners in the focal planes of the 2.5 m telescopes.

SDSS-V comprises three primary projects: the Milky Way
Mapper, the Black Hole Mapper, and the Local Volume
Mapper. The Milky Way Mapper will use the APOGEE and
BOSS spectrographs to observe 4–5 million stars in the Milky
Way and Local Group, probing questions of galaxy formation
and evolution, stellar astrophysics, and stellar system archi-
tecture. The Black Hole Mapper will use the BOSS spectro-
graphs to measure masses for ∼1200 supermassive black holes
via reverberation mapping (e.g., Grier et al. 2017), determine
spectral variability for ∼25,000 quasars, and provide identifi-
cations and redshifts for ∼400,000 X-ray sources detected by
eROSITA (Predehl et al. 2014). The Local Volume Mapper will
collect IFS using new, R 4000~ optical spectrographs coupled
to small telescopes at APO and LCO. These spectra will span
∼3000deg2 of sky in the Milky Way midplane, the Magellanic
Clouds, and other Local Group galaxies at high spatial
resolution, with the goal of tracing ISM physics and stellar–
ISM energy exchange on different physical scales in a range of
galactic environments.

6.7. Long-term Sustainability of the SDSS Archives

Starting in 2017, the Science and Catalog Archive Teams
have been proceeding on a roadmap toward a sustainable data
archive,129 designed to protect the legacy of SDSS Data.

Some of the steps on this roadmap, which are currently
receiving attention, include:

1. Archival-quality Storage: The SAS file system was not
designed to last beyond the warranty of the disks, and
disk corruption issues require meticulous and time-
intensive repairs. The SAS Team is currently implement-
ing a ceph-based archival-quality object storage system
(Weil et al. 2006) similar to that used by organizations
specializing in big data (e.g., Google and Amazon),
providing complete internal redundancy, support for
geographical distribution, internal failure detection and
self-recovery, and inexpensive backup in cloud-based big
data object storage systems.

2. Science Archive Database: The census of what is
contained on the SAS is managed through a Python
system with a database that records the hundreds of
millions of file paths, file sizes, and file verification
checksums. This system is currently being re-implemen-
ted to allow a more seamless and high-speed data access.

3. Migrating the SDSS Software Repository to GitHub: The
SDSS subversion software repository, currently served

alongside the SAS, will be replaced by repositories
copied into a GitHub organization (https://github.com/
sdss), with GitHub Teams created to manage repository
access control, with public release of software including
open source licensing, starting with DR15 (e.g., Marvin
and the underlying code “Marvin’s Brain”).

4. SDSS Software Framework Development: The Data and
Operations Teams are currently designing a new software
framework to provide Python-based tools, including
improved data access, database access, data model
documentation, and machine-readability.

5. SDSS Software Containers: Portable images of SDSS
systems have been developed and implemented on
Docker Hub and are currently used at NERSC for the
Science Archive Mirror and JHU for Science Archive
Webapp development (e.g., Marvin at JHU). The data
team is now looking at developing a new wave of such
virtual machines to replicate the experience of working
on an SDSS computer at the University of Utah.

6.7.1. Modernizing SkyServer

SkyServer has been the primary online web portal to the
CAS since the beginning of SDSS, and although it underwent a
significant facelift in 2007, it is now woefully outdated in terms
of its layout and user experience, and generally in terms of its
usability and accessibility. SkyServer has been due for a rewrite
with modern web technology for several years now, and we are
finally undertaking this daunting task as we wind down SDSS-
IV and look forward to SDSS-V. One of the biggest constraints
that makes this a difficult enterprise is the large user base that
SkyServer has built over the past 15+ years. We do not want to
completely rearrange the site in such a way that users no longer
recognize it, and more importantly, we do not want to break all
of the functionality that works very well currently in spite of
the outdated interface. In short, we want to adopt a philosophy
of going from “working to working” versions as we modernize
the site. We list below the specific changes we are currently
working on.

1. Upgrade Technology: First and foremost, we are
upgrading the web technology underneath SkyServer.
This includes everything from the version of HTML and
CSS that it was originally written in, to the way that the
SkyServer website code is logically organized. We are
going toward the MVC (model–view–controller) para-
digm that modern websites use to produce modular,
reusable, and robust web applications.

2. Portability: SkyServer has been a Microsoft Windows
application developed with the .NET framework all
along. This has made it very difficult to port even the
front end to any other platform. Now, with the
availability of .NET Core, we have the opportunity to
migrate the website to a portable platform that can not
only run in Linux, but can also be Dockerized.

3. Usability: Usability standards have changed considerably
since the time when SkyServer originally came online. In
spite of significant upgrades to different parts of
SkyServer over the years, there has not been a
comprehensive reexamination of the usability aspects.
We aim to rectify this as we redesign the user interface.
Usability changes will include the effective presentation
of information, compatibility with all browsers,129 Funded by a dedicated grant from the Sloan Foundation.
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responsiveness of page loads, and consistency of display
modes (e.g., opening a new tab for results from a query
and/or bringing the results pane to the front).

4. Accessibility: Accessibility pertains to the versatility of
the website and how responsive and easy it is to use and
work with for users that are restricted in various ways.
This ranges from users on mobile devices to users with
restricted access to the internet as well as users with
impaired vision or other handicaps. Incorporating modern
web design standards and technologies will mostly take
care of these aspects, but we will pay special attention to
make sure that SkyServer can be used by as many people
as possible anywhere in the world there is internet access.

5. Integrate SkyServer and Voyages: SkyServer has an
extensive educational section that contains several levels
of classroom exercise based on SDSS data. These are
known collectively as the SkyServer Projects. Voyages is
a SkyServer “spinoff” website that has become quite
popular and presents several virtual “voyages” through
the SDSS data for non-scientist audiences. The Voyages
website is a much more modern web application that is
based on a content management system (CMS)—
WordPress. This allows new pages and functionality to
be added to Voyages much more easily than to
SkyServer. As part of the SkyServer modernization, we
are migrating all of the SkyServer student projects to
Voyages and using the same CMS (WordPress) for
SkyServer too. We are also integrating Voyages further
with SkyServer so that it uses the SkyServer API to run
queries on the SDSS data.

6. Streamline CAS  SAS Interface: There are hooks
currently between SkyServer/Voyages and the SAS, but
they are awkward at best. The SAS API has recently been
upgraded, and the points of access to SAS data that
currently exist in SkyServer and Voyages will be updated
to use the proper SAS API calls.

These steps will help ensure the availability of SDSS data to
astronomers for years to come, and long beyond the current
funded plans for SDSS-IV and SDSS-V. The CAS data and
access tools will at that point be well positioned to be readily
integrated into existing data centers for a minimal incremen-
tal cost.
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