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Abstract  

  

Cognitive Radio (CR) effectively involved in the management of 
spectrum to perform improved data transmission. CR system actively 

engaged in the data sensing, learning and dynamic adjustment of 

radio spectrum parameters with management of unused spectrum in 
the signal. The spectrum sensing is indispensable in the CR for the 

management of Primary Users (PUs) and Secondary users (SUs) 

without any interference. Spectrum sensing is considered as the 

effective adaptive signal processing model to evaluate the 
computational complexity model for the signal transmission through 

Matched filtering, Waveform and Cyclostationary based Energy 

sensing model. Cyclostationary based model is effective for the 
energy based sensing model based on unique characteristics with 

estimation of available channel in the spectrum to extract the 

received signal in the PU signal. Cyclostationary based model uses 
the spectrum availability without any periodic property to extract the 

noise features. This paper developed a Adaptive Cross Score 

Cyclostationary (ACSCS) to evaluate the spectrum sensing in the CR 

network. The developed ACSCS model uses the computational 
complexity with estimation of Signal-to-Interference-and-Noise 

Ratio (SINR) elimination of cost function. ACSCS model uses the 

Adaptive Least square Spectral Self-Coherence Restoral (SCORE) 
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with the Adaptive Cross Score (ACS) to overcome the issues in CR. 

With the derived ACSCS algorithm minimizes the computational 
complexity based on cost function compared with the ACS 

algorithm. To minimize the computational complexity pipeline 

triangular array based Gram-Schmidt Orthogonalization (GSO) 
structure for the optimization of network. The simulation 

performance analysis with the ACSCS scheme uses the Rician 

Multipath Fading channel to estimate detection probability to sense 

the Receiver Operating Characteristics, detection probability and 
probability of false alarm using Maximum Likelihood (ML) detector. 

The ACSC model uses the Square-law combining (SLC) with the 

moment generation function in the multipath fading channel for the 
channel sensing with reduced computational complexity. The 

simulation analysis expressed that ACSC scheme achieves the 

maximal detection probability value of 1. The analysis expressed that 
proposed ACSC scheme achieves the improved channel estimation in 

the 4G communication environment.  

Keywords: Cyclostationary algorithm, Signal-to-Interference-and-

Noise Ratio, Probability of Detection, Multipath Fading, Gram-

Schmidt Orthogonalization (GSO) 

 

1. Introduction 

An improved form of Software Designed Radio (SDR), otherwise called Mental Radio (CR), is an 

innovation that has as of late seen rising prominence in remote applications. The justification for 
ongoing interest in this procedure is mostly because of their additional element of dynamic range 

designation strategy [1]. Worldwide principles utilize CR to successfully use the unused piece of the 

range for remote interchanges and they are now settled or being lay out by IEEE 802.22 norms. By 
utilizing CR innovation, it is feasible to detect the climate and change the organization to oblige any 

change. The vitally mental undertaking expected to accomplish dynamic sharing is alluded as a 

mental cycle [2]. The three primary strides of this cycle are range detecting, range investigation and 

range choice. Range detecting is the main fixing among others for sending off the CR in remote 
gadget. Range detecting not just registers the ghostly substance and obstruction temperature over the 

range yet in addition decides sort of balance, transporter recurrence and transmission capacity of the 

Discharge band. In any case, this requires predominant versatile sign examination with extra 

computational intricacy [3]. 

Cyclostationarity highlight recognition is a strategy for recognizing PU signal by using the 

Cyclostationarity elements of the got signals [4]. Cyclostationary highlights, for example, cyclic auto 

connection capability and ghostly relationship capability are utilized to identify such signals present in 
a given range. The Cyclostationarity-based identification calculations can separate channel 

commotion from PU signals, since the channel clamour is Wide-Sense Fixed (WSS) which doesn't 

have relationship property [5]. PU signals are Cyclostationary with ghostly connection, because of the 

overt repetitiveness of sign periodicities. 

Cyclostationary highlight recognition depends on cyclic connection capability which can 
powerfully distinguish feeble signs from Discharge by just using the Cyclostationarity property of 

correspondence signals [6]. Notwithstanding, the high execution intricacy confines its broad use. As 

of late, a few works have been examined to lessen the computational intricacy of Cyclostationary 
based range detecting calculation in CR framework through consistent modulus calculation [7] ideal 

Radiometer, Fourier range cyclic thickness (SCD) [8], multitaper - Loeve rendition [9] and Ghostly 

Self-Cognizance Restoral (SCORE) [10]. These are the most alluring ones because of good 

framework execution and low intricacy. Among these strategies, SCORE calculation is the most 
effective methodology, express, logically manageable assembly and determination properties, which 

give them a benefit over the other property restoral procedures. One more significant benefit of the 
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SCORE calculations over customary strategies is that the main fundamental boundary for these 

calculations is the cycle recurrence of the ideal signs [11]. 

There are five SCORE based Cyclostationary beamforming new algorithms proposed [12], 

namely the Adaptive Cyclic Adaptive Beamforming (ACAB), Adaptive Cross-SCORE (ACS), 

Adaptive Least-Squares (ALS), Adaptive Phase-SCORE (APS), and Maximal Constrained 

Autocorrelation (MCA) algorithms [13]. In these SCORE based algorithms, the received signals are 
multiplied by the weighting factor and then they are added together to produce alternative transmit 

data holding the same information. A matrix inverse lemma formula is applied in all the above 

algorithms to reduce the computational complexity. Hence, all these algorithms have a far more 
reasonable implementation complexity than the traditional cyclic-spectrum estimation-based 

Cyclostationary feature detectors [14]. Each of these algorithms has the specific application. Among 

these five algorithms, ACS can turn out high performance for well-built interference and can produce 

good results in the case of average or fragile interference. 

In this paper, it proposed an Adaptive Cross Score Cyclostationary (ACSCS) for the spectrum and 
channel estimation in the 4G wireless communication. The ACSCS scheme uses the Signal-to-

Interference-and-Noise Ratio (SINR) elimination of cost function. ACSCS model uses the Adaptive 

Least square Spectral Self-Coherence Restoral (SCORE) with the Adaptive Cross Score (ACS) to 
overcome the issues in CR. With the derived ACSCS algorithm minimizes the computational 

complexity based on cost function compared with the ACS algorithm. To minimize the computational 

complexity pipeline triangular array based Gram-Schmidt Orthogonalization (GSO) structure for the 
optimization of network. The simulation performance analysis with the ACSCS scheme uses the 

Rician Multipath Fading channel to estimate detection probability to sense the Receiver Operating 

Characteristics, detection probability and probability of false alarm using Maximum Likelihood (ML) 

detector. 

The paper is organized as follows: The section 2 provides the related works on the channel 
sensing and estimation and proposed ACSCS scheme is presented in Section 3. The simulation results 

are presented in Section 4 and overall conclusion is presented in Section 5.  

2. Related Works 

In [15] proposed Statistic spectrum sensing algorithm under complex surroundings in CR 

networks. The proposed algorithm is based on the Cyclostationary feature detection and theory of 
Hilbert transformation and this strategy is more flexible i.e. it can reduce the computational 

complexity, according to the existing electromagnetic surroundings by changing its sampling times 

and the step size of cyclic frequency. The simulation shows that this scheme can be used to detect 
both straightforward signals and modulated Cyclostationary signals, and it yields acceptable 

performance compared to conventional energy detection algorithm. Furthermore, the noise power is 

unknown for CUs and it provides a satisfactory detection performance, when the SNR is low. 

In [16], we have analysed two algorithms such as Adaptive Cross Self-coherent- restoral (ACS) 
and Cyclic Adaptive Beam forming (CAB) to enhance the sensing performance in medium or weak 

interference environments. Simulation result shows that the proposed algorithm is more suitable for 

wireless applications and mobile communications. 
In [17] proposed an effective spectrum sensing algorithm for CR to detect PUs as early as 

possible. The proposed algorithm deals with small data sets to compute real covariance matrix in 

order to preserve the detection attainment. The simulation shows the comparison between the 
proposed algorithm and other conventional method using a captured Digital TV (DTV) signal and this 

proposed method can work either using limited data sets or work under a lower SNR surroundings. 

In [18] examined the presentation examination of range detecting of CR under various blurring 

climate. Range detecting is the really key task of CR. There are different sorts of non-agreeable range 
detecting strategies which are energy, matched channel and Cyclostationary based identification. Here 

planning CR frameworks can appraise the energy of the range. By using energy location method, the 

presentation of the proposed framework is dissected on various blurring channels like AWGN, 
Rayleigh blurring, and Nakagami blurring channel. 
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In [19] proposed a FPGA execution of an autocorrelation based range detecting calculations for 
CR applications. Here, the embellishments of DC offset, recurrence offset and their aggregate 

presence on range detecting execution are dissected. The remuneration factors, which are 

incorporated, make the calculation lenient against these two counterbalances. Recreation result done 

in MATLAB shows the viability of the proposed calculation. Moreover, the proposed calculation is 
executed on a Xilinx Virtex 5 board (XC5VLX110T) and the equipment results are verified. 

In [20] VLSI underlying model for Cyclostationary highlight identification based range detecting 

for CR framework. Here, VLSI engineering is changed to recognition of calculation for FPGA 
prototyping and ASIC plan. Framework level plan of this recognition conspire and the models of all 

its interior blocks have been proposed. Thus, execution examination of the proposed identifier has 

been dropped in AWGN climate where it could convey 0.95 Location Likelihood at - 6 dB. At long 
last, the proposed framework level design is orchestrated and post format re-enactments are done. 

 

3. Adaptive Cross Score Cyclostationary 4G Communication 

Spectral correlation in the cognitive is effective for the computation of the resource allocation in 
the wireless communication environment. The proposed Adaptive Cross Score Cyclostationary 

(ACSCS) model for the resource allocation between the users in the cognitive radio network 

environment, the autocorrelation function estimation in the stochastic process 𝑔(𝑡) is computed as in 

equation (1) 

𝑅𝑔(𝑡, 𝜏) = 𝐸 [𝑔 (𝑡 +
𝜏

2
) 𝑔∗ (𝑡 −

𝜏

2
)]                                                    (1) 

 In the above equation (1) the complex conjugation is denoted as *, the sense of 

Cyclostationary object is denoted as the 𝑔(𝑡) with the periodic function of 𝑅𝑔(𝑡, 𝜏) with the time 

period of T0 with time T as computed with Fourier Series measured as in equation (2) 

𝑅𝑔(𝑡, 𝜏) = ∑ 𝑅𝑔
𝛼(𝜏)𝑒2𝜋𝛼𝑡

𝛼                                                             (2) 

 Using equation (2) the autocorrelation function is computed periodic manner through the 

integer multiple of fundamental frequency for the 
1

𝑇0
. The Fourier coefficient of the variables are 

measured with equation (3) 

𝑅𝑔
𝛼(𝜏) = 𝑙𝑖𝑚𝑇→∞ ∫ 𝑅𝑔(𝑡, 𝜏)

+
𝑇

2

−
𝑇

2

𝑒−𝑗2𝜋𝛼𝑡𝑑𝑡             (3) 

Where, the integer value is measured as 𝛼, the cyclic autocorrelation function (CAF) of the variable is 

measured with 𝑅𝑔
𝛼(𝜏). The cyclic spectrum of the idealized Fourier transform is represented as in 

equation (4) 

𝑃𝑔
𝛼(𝑓) = ∫ 𝑅𝑔

𝛼(𝜏)
+∞

−∞
𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏                                                           (4) 

With non-probabilistic scheme the time series are measured with 𝑔(𝑡) through the second-order 

periodicity with the synchronized average lag of time-series signal o(t)=g(t+ τ/2)g*(t-τ/2) using the 

equation (5) 

�̂�𝑔(𝜏, 𝑡) ≜ 𝑙𝑖𝑚𝑀→∞
1

2𝑁+1
∑ 𝑔 (𝑡 + 𝑛𝑇0 +

𝜏

2
) 𝑔∗ (𝑡 + 𝑛𝑇0 −

𝜏

2
)+𝑀

𝑛=−𝑀 (5) 

 With equation (5) the periodic autocorrelation between the functions are computed based on 

the non-probabilistic periodic value of the signal as represented in the equation (6) 

𝑅𝑔
𝛼(𝜏) ≜ 𝑙𝑖𝑚𝑀→∞

1

𝑇
∫ 𝑔 (𝑡 +

𝜏

2
) 𝑔∗ (𝑡 −

𝜏

2
) 𝑒−𝑗2𝜋𝛼𝑡 𝑑𝑡

+
𝑇

2

−
𝑇

2

                          (6) 

 The spectrum signal autocorrelation function is estimated with the cyclic limits with spectrum 

function categorized with the Fourier transform as in equation (7) 
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�̂�𝑔
𝛼(𝑓) = ∫ 𝑅𝑔

𝛼(𝜏)
+∞

−∞
𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏                                                 (7) 

The proposed ACSCS compute the CAF constructive conjugate function as represented in equation 

(8) 

�̂�𝑔
𝛼(𝜏) = 𝑙𝑖𝑚𝑇→∞

1

𝑇
∫ 𝑅𝑔

∗ (𝑡, 𝜏)𝑒−𝑗2𝜋𝛼𝑡 𝑑𝑡
+

𝑇

2

−
𝑇

2

                                 (8) 

The ACSCS uses the Cyclostationary feature detection model for the estimation of coherence and 
synchronization. The estimation is based on the consideration of different signal properties those 

exhibits the minimal SNR value. Based on consideration of IEEE 802.22 spectrum sensing is adopted 

with the CR model for the feature detection for the single or multiple frequencies. The feature of the 

cognitive model is computed based on the oversampling and resolution with the cycle domains and 
frequencies. The signals are oversample based on the cyclic field with the maximal resolvable cycle 

satisfies the Nyquist rate frequencies. The spectral resolution of the cognitive user is finer for the 

cycle frequency of Δα « Δf ≈ (1/T). With the developed frequency and cyclic domain signals with 
ACSCS is computed for the longer period of time. The SCF function is computed to measure the 

computational complexity for the specified (α, f), with the SCF value of O(N2 + (N/2) log2N). The 

energy detector computation complexity is estimated using O((N/2) log2 N). 

3.1 ACSCS Scheme for Cyclostationary Beamforming 

 The proposed ACSCS scheme uses the algorithm comprises of the SCORE< Least-Square 

and Cross SCORE. The developed algorithm uses the complex multiplication of O(n3) for the input 
samples for the antenna array elements. The ALS and ACS algorithm complex multiplication with the 

complexity value of O(n2). The adaptive Cyclostationary beamforming algorithm computes the desire 

signal Cochannel interference for the cycle frequency. The cognitive network narrow-band signal are 
estimated based on antenna array measured with the Signal Of Interest (SOI) g(t),noise and 

interference, the antenna array signal received is represented as in equation (9) 

𝑟(𝑡) = 𝑠𝑔(𝑡) + 𝑖(𝑡)                               (9) 

 In equation (9), the antenna array SOI factor is represented as 𝑠, the interfering signal and 

channel signal is denoted as 𝑖(𝑡). The self-coherent spectrum is denoted as 𝑔(𝑡) for the signal 𝛼. The 

Primary user (PU) in the signal form is extracted based on the adaptive beamformer 𝑟(𝑡) as in 

equation (10) 

𝑂(𝑡) =  𝑤𝐻𝑟(𝑡)(10) 

Where, the 𝑂(𝑡) represented as the extracted SOI, the weighted vector with the beamforming is 

denoted as 𝑤𝐻  based on interference due to radiation pattern. The overall architecture of proposed 

ACSCS scheme in 4G communication is presented in figure 1. 

 
Figure 1. Architecture of ACSCS 
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The proposed ACSCS uses the adaptive beamforming SCORE for analysis of self-coherence spectral 

level using the equation (11) with the reference signal s(t) 

𝑓(𝑡) ≜ 𝑐𝐻𝑟(∗)(𝑡 − 𝜏)𝑒−𝑗2𝜋𝛼𝑡(11) 

The control vector is denoted as 𝑐𝐻 for the received signal 𝑓(𝑡) for the transmitted signal 

𝑔(𝑡) in PU signal for the estimation of self-coherence for the frequency separation 𝛼. The reference 

signal decay 𝑓(𝑡) for SOI uncorrelated signal value 𝑔(𝑡) and 𝑖(𝑡) as in equation (12) 

𝑓(𝑡) = 𝑠𝑔(𝑡) + 𝑖(𝑡)(12) 

The ACS estimates the cost function in the cognitive radio network estimated with the function as in 

equation (13) 

𝐸𝐴𝐿𝑆 ≜ 〈|𝑜(𝑡) − 𝑓(𝑡)|2〉(13) 

 In above equation (13), the interval time average is denoted as [0, T] and optimized weighted 

vector is computed.  

4. Simulation Results 

To observe the performance of the proposed algorithms, few simulations are carried out in this 

section by considering a uniform linear array with n=4, 8, 12 & 16 elements. The distance 
between the neighbouring elements is half the wavelength of the carrier frequency 1050 MHz. 

The spectrum, which is split into five PU channels, is considered as listed in Table 1. In this case, 

simulations are carried out for 5000 input samples. 

Table 1. Spectrum of PU signals 

Signals Carrier frequency (MHz) Modulation  DOA SNR User 

P 1051.1 BPSK 200 16dB PU 

Q 1051.1 BPSK 41 12 PU 

R 1051.1 BPSK 55 27 PU 

S 1051.1 BPSK 70 29 PU 

T 1051.1 BPSK 85 34 PU 

 

Spectrum sensing algorithms in CR system are analysed for computational complexity reduction 

using adaptive Cyclostationary beamforming algorithms by considering the signal ‗R‘ as SOI. The 

computational complexity reduction issues of the ALS, ACS, the proposed ACSCS algorithms and 

their pipeline implementations for various number of antenna array elements are shown in Table 2. It 
is observed that, to implement ACS algorithm 466 complex multiplications are required for n=8 and 

SINR obtained by this algorithm is approximately 5.8 dB. However, ACSCS algorithm provides a 

better SINR value of 7.1 dB and it requires only 338 complex multiplications to implement ACSCS 
algorithm for n=8, which is less compared to ACS algorithm. Even though number of complex 

multiplication required implementing ALS algorithm is around 322 for n=8, it is less compared to 

ACS and ACSCS algorithms. But it has obtained very low SINR approximately 1.1 dB which is very 

less compared to other algorithms and it is practically unrealizable 

Table 2. Comparison of Computational Complexity 

Number of 

Antenna 

Array 

Elements ‘n’ 

ALS (4.75n
2
 +2.25n) ACS (6.75n

2
 + 4.25n) ACSCS (4.75n

2
 + 4.25n) 

No. of Complex 

multiplication 

SINR 

(dB) 

No. of Complex 

multiplication  

SINR 

(dB) 

No. of Complex 

multiplication 

SINR 

(dB) 

4 85 0.5 78 1.3 93 5.2 

8 322 1.1 189 6.9 338 7.1 

12 711 1.6 479 11.4 735 10.3 

16 1252 2.3 693 16.8 1284 20.2 
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Figure 2. Comparison of Computational Complexity 

Moreover, ACSCS algorithm provides a reduced computational complexity approximately 27.4 % 

compared to ACS algorithm in figure 2. Hence, the ACSCS algorithm rapidly extracts the desired 

signal from the received signal compared to ACS algorithm. The ALS, ACS and ACSCS algorithm 
are designed and analysed for their cost function and the results are obtained during simulation as 

shown in the Table 3. The cost functions is nothing but difference between the output signal (𝑡)and 

the reference signal 𝑓𝑡 . Based on this erroneous signal, the weighting and control vectors of these 

algorithms are optimized. 

Table 3. Comparison of Cost Function 

Spectrum sensing Algorithm ALS ACS ACSCS 

Cost Function 0.5409 0.1353 0.0632 

 

From the Table 3, it is also observed that the cost function is approximately reduced to 75% by using 

the ACS algorithm and 88% by using the proposed ACSCS algorithm compared to ALS algorithm. 

ROC of Adaptive SCORE and its pipeline implementation of spectrum sensing algorithms by 

considering signal ‘Q’ as SOI over Rayleigh fading channel. The probability of detection is presented 

in table 4. 

Table 4. Comparison of Probability of Detection 

Probabilit

y of False 

alarm (Pf) 

ALS Pipeline 

implementati

on Of ALS 

ACS Pipeline 

implementati

on Of ACS 

ACSCS Pipeline 

implementati

on Of ACSCS 

Detection 
Probabilit

y (𝑷𝒅𝒆𝒕 ) 

Detection 
Probability 

(𝑷𝒅𝒆𝒕 ) 

Detection 
Probabilit

y (𝑷𝒅𝒆𝒕 ) 

Detection 
Probability 

(𝑷𝒅𝒆𝒕 ) 

Detection 
Probabilit

y (𝑷𝒅𝒆𝒕 ) 

Detection 
Probability 

(𝑷𝒅𝒆𝒕 ) 

0.2 0.01 0.01 0.01 0.03 0.78 0.8 

0.4 0.08 0.07 0.08 0.08 0.9 1 

0.6 0.4 0.5 0.3 0.5 1 1 

0.8 0.8 0.7 0.7 0.7 1 1 

1.0 1 1 1 1 1 1 

The figure 4 and figure 5 provides the detection probability value of the ALS, ACS and ACSCS 

scheme based on false alarm probability value.  
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Figure 4. Comparison of Detection Probability 

 

Figure 5. Comparison of Detection Probability in Pipeline Model 

From the Table.5, it is observed that, when the probability of false alarm 𝑃𝑓𝑎𝑙𝑠𝑒 is 0.4, the Detection 

Probability𝑃𝑑𝑒𝑡 is approximately 0.45 by using ALS algorithm whereas the pipeline implementation 

of ACSCS provides better 𝑃𝑑𝑒𝑡 value of 0.9 compared to other algorithms. It is also seen that the 

value of Detection Probability𝑃𝑑𝑒𝑡 increases while the original ALS, ACS and ACSCS algorithms 

are implemented in pipeline over Rayleigh fading channel. 

Table 5. Comparison of False Alarm 

SN

R 

(dB) 

Pipeline implementation of 

ALS 

ACSCS Pipeline implementation of 

ACSCS algorithm 

Detection Probability (𝑷𝒅𝒆𝒕 ) Detection Probability (𝑷𝒅𝒆𝒕 ) Detection Probability (𝑷𝒅𝒆𝒕 ) 

m=

1 

m=2.

7 

m=3.

7 

m=4.

7 

m=

1 

m=2.

7 

m=3.

7 

m=4.

7 

m=

1 

m=2.

7 

m=3.

7 

m=4.

7 

2 0.05 0.05 0.05 0.05 0.0

8 

0.3 0.3 0.2 0.2 0.2 0.2 0.2 

4 0.05 0.08 0.08 0.2 0.3 0.5 0.5 0.4 0.3 0.4 0.4 0.4 

8 0.09 0.2 0.2 0.18 0.6 0.6 0.7 0.6 0.5 0.5 0.6 0.7 

12 0.3 0.6 0.4 0.3 0.7 0.8 0.8 1 0.7 0.7 0.8 1 

16 0.8 0.8 0.8 0.7 0.8 1 1 1 0.9 1 1 1 

20 1 1 1 1 1 1 1 1 1 1 1 1 
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The figure 6(a), 6(b) and 6(c) illustrated the probability of detection for the comparative examination 

of false alarm with the ACSCS scheme for the spectrum sensing and resource allocation. 

 

(a) 

 

(b) 

 

(c) 

Figure 6.  Comparison of Detection Probability (a) ALS (b) ACS and (c) Pipeline ACSCS 

Table 5 represents the Detection Probability𝑃𝑑𝑒𝑡 which is computed for different values of SNR by 
using the proposed ACSCS algorithm and the pipeline implementations of ALS, ACS and ACSCS 
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algorithms over Nakagamim fading channels. By considering the four isotropic arrays, the proposed 
algorithms are simulated for various values of Nakagami parameter m=1, 2.7, 3.7, and 4.7. Here, both 

the integer and non-integer values of Nakagami-m parameter are considered. Rayleigh value matches 

with the Nakagami, when m= 1. It is also observed that, for SNR = 8dB and m=3.7 combinations, 

𝑃𝑑𝑒𝑡 by ACSCS algorithm is approximately 0.5 whereas pipeline implementation of ACSCS 

algorithm provides better 𝑃𝑑𝑒𝑡 value of 0.69 compared to other algorithms. With the Nakagami 

fading model the developed ACSCS scheme exhibits higher fading index value of m with the 

improved performance. The increased fading index exhibits the higher average SNR value for the 

degraded received signal value with the improved probability of detection. 

5. Conclusion 

For the optimization of weighting vector, it is observed that by using the proposed ACSCS algorithm 

the Cyclostationarity-based sensing in CR system provides better computational complexity reduction 

approximately 27.4 % compared to ACS algorithm. Further, approximately 90% reduction is 
achieved, when this proposed algorithm is implemented in pipeline. It is also observed that the cost 

function is approximately reduced to 75% by using the ACS algorithm and 88% by using the 

proposed ACSCS algorithm compared to ALS algorithm. When these algorithms are implemented in 
pipeline, the cost function is further reduced to 29% and 75% compared to original ACS and ACSCS 

algorithms, respectively. It is also noted that the pipeline implementation of ACSCS algorithm 

provides better reduction in device utilization approximately 47 % compared to original ALS, ACS 

and ACSCS algorithms, when it is realized in FPGA. Thus, the proposed pipeline implementation of 

ACSCS algorithm shows superior performance to all other algorithms. 
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