1,219 research outputs found

    Anxiety, emotional processing and depression in people with multiple sclerosis.

    Get PDF
    BACKGROUND: Despite the high comorbidity of anxiety and depression in people with multiple sclerosis (MS), little is known about their inter-relationships. Both involve emotional perturbations and the way in which emotions are processed is likely central to both. The aim of the current study was to explore relationships between the domains of mood, emotional processing and coping and to analyse how anxiety affects coping, emotional processing, emotional balance and depression in people with MS. METHODS: A cross-sectional questionnaire study involving 189 people with MS with a confirmed diagnosis of MS recruited from three French hospitals. Study participants completed a battery of questionnaires encompassing the following domains: i. anxiety and depression (Hospital Anxiety and Depression Scale (HADS)); ii. emotional processing (Emotional Processing Scale (EPS-25)); iii. positive and negative emotions (Positive and Negative Emotionality Scale (EPN-31)); iv. alexithymia (Bermond-Vorst Alexithymia Questionnaire) and v. coping (Coping with Health Injuries and Problems-Neuro (CHIP-Neuro) questionnaire. Relationships between these domains were explored using path analysis. RESULTS: Anxiety was a strong predictor of depression, in both a direct and indirect way, and our model explained 48% of the variance of depression. Gender and functional status (measured by the Expanded Disability Status Scale) played a modest role. Non-depressed people with MS reported high levels of negative emotions and low levels of positive emotions. Anxiety also had an indirect impact on depression via one of the subscales of the Emotional Processing Scale ("Unregulated Emotion") and via negative emotions (EPN-31). CONCLUSIONS: This research confirms that anxiety is a vulnerability factor for depression via both direct and indirect pathways. Anxiety symptoms should therefore be assessed systematically and treated in order to lessen the likelihood of depression symptoms

    Cross-cultural validation of a French version of the Emotional Processing Scale (EPS-25)

    Get PDF
    Introduction: The Emotional Processing Scale (EPS) is a self-report questionnaire consisting of 25 items designed to identify emotional processing styles and impairments. The aim was to develop a French version of the scale and to test its preliminary validity and reliability in French community and clinical samples. Method: After translation and back-translation, a validation study was conducted with 1176 adults [215 from a community sample, 251 undergraduate psychology students, 686 people with a range of physical health conditions (HIV, multiple sclerosis, chronic pain, leukaemia) and 24 people with bipolar disorder hospitalised for depression]. Results: The internal reliability of the French EPS was good, with a Cronbach's alpha of.91. The five-factor structure of the original English version of the scale was closely reproduced. Conclusions: The French EPS demonstrated good reliability and validity. Correlations with other conceptually similar scales (e.g., TAS-20, CERQ, STAXI) were as predicted. EPS scores distinguished between groups (clinical samples vs. a community sample) that would be expected to differ

    Classical Evolution of Quantum Elliptic States

    Get PDF
    The hydrogen atom in weak external fields is a very accurate model for the multiphoton excitation of ultrastable high angular momentum Rydberg states, a process which classical mechanics describes with astonishing precision. In this paper we show that the simplest treatment of the intramanifold dynamics of a hydrogenic electron in external fields is based on the elliptic states of the hydrogen atom, i.e., the coherent states of SO(4), which is the dynamical symmetry group of the Kepler problem. Moreover, we also show that classical perturbation theory yields the {\it exact} evolution in time of these quantum states, and so we explain the surprising match between purely classical perturbative calculations and experiments. Finally, as a first application, we propose a fast method for the excitation of circular states; these are ultrastable hydrogenic eigenstates which have maximum total angular momentum and also maximum projection of the angular momentum along a fixed direction. %Comment: 8 Pages, 2 Figures. Accepted for publication in Phys. Rev.

    Modeling DNA Structure, Elasticity and Deformations at the Base-pair Level

    Full text link
    We present a generic model for DNA at the base-pair level. We use a variant of the Gay-Berne potential to represent the stacking energy between neighboring base-pairs. The sugar-phosphate backbones are taken into account by semi-rigid harmonic springs with a non-zero spring length. The competition of these two interactions and the introduction of a simple geometrical constraint leads to a stacked right-handed B-DNA-like conformation. The mapping of the presented model to the Marko-Siggia and the Stack-of-Plates model enables us to optimize the free model parameters so as to reproduce the experimentally known observables such as persistence lengths, mean and mean squared base-pair step parameters. For the optimized model parameters we measured the critical force where the transition from B- to S-DNA occurs to be approximately 140pN140{pN}. We observe an overstretched S-DNA conformation with highly inclined bases that partially preserves the stacking of successive base-pairs.Comment: 15 pages, 25 figures. submitted to PR

    Colloquium: Mechanical formalisms for tissue dynamics

    Full text link
    The understanding of morphogenesis in living organisms has been renewed by tremendous progressin experimental techniques that provide access to cell-scale, quantitative information both on theshapes of cells within tissues and on the genes being expressed. This information suggests that ourunderstanding of the respective contributions of gene expression and mechanics, and of their crucialentanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assistthe design and interpretation of experiments, point out the main ingredients and assumptions, andultimately lead to predictions. The newly accessible local information thus calls for a reflectionon how to select suitable classes of mechanical models. We review both mechanical ingredientssuggested by the current knowledge of tissue behaviour, and modelling methods that can helpgenerate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and tissue scale ("inter-cell") contributions. We recall the mathematical framework developpedfor continuum materials and explain how to transform a constitutive equation into a set of partialdifferential equations amenable to numerical resolution. We show that when plastic behaviour isrelevant, the dissipation function formalism appears appropriate to generate constitutive equations;its variational nature facilitates numerical implementation, and we discuss adaptations needed in thecase of large deformations. The present article gathers theoretical methods that can readily enhancethe significance of the data to be extracted from recent or future high throughput biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few corrections to the published version, all in Appendix D.2 devoted to large deformation

    KCNA5 gene is not confirmed as a systemic sclerosis-related pulmonary arterial hypertension genetic susceptibility factor

    Get PDF
    <p>Introduction: Potassium voltage-gated channel shaker-related subfamily member 5 (KCNA5) is implicated in vascular tone regulation, and its inhibition during hypoxia produces pulmonary vasoconstriction. Recently, a protective association of the KCNA5 locus with systemic sclerosis (SSc) patients with pulmonary arterial hypertension (PAH) was reported. Hence, the aim of this study was to replicate these findings in an independent multicenter Caucasian SSc cohort.</p> <p>Methods: The 2,343 SSc cases (179 PAH positive, confirmed by right-heart catheterization) and 2,690 matched healthy controls from five European countries were included in this study. Rs10744676 single-nucleotide polymorphism (SNP) was genotyped by using a TaqMan SNP genotyping assay.</p> <p>Results: Individual population analyses of the selected KCNA5 genetic variant did not show significant association with SSc or any of the defined subsets (for example, limited cutaneous SSc, diffuse cutaneous SSc, anti-centromere autoantibody positive and anti-topoisomerase autoantibody positive). Furthermore, pooled analyses revealed no significant evidence of association with the disease or any of the subsets, not even the PAH-positive group. The comparison of PAH-positive patients with PAH-negative patients showed no significant differences among patients.</p> <p>Conclusions: Our data do not support an important role of KCNA5 as an SSc-susceptibility factor or as a PAH-development genetic marker for SSc patients.</p&gt

    Digitizing a Face-to-Face Group Fatigue Management Program: Exploring the Views of People With Multiple Sclerosis and Health Care Professionals Via Consultation Groups and Interviews.

    Get PDF
    BACKGROUND: Fatigue is one of the most common and debilitating symptoms of multiple sclerosis (MS) and is the main reason why people with MS stop working early. The MS Society in the United Kingdom funded a randomized controlled trial of FACETS-a face-to-face group-based fatigue management program for people with multiple sclerosis (pwMS)-developed by members of the research team. Given the favorable trial results and to help with implementation, the MS Society supported the design and printing of the FACETS manual and materials and the national delivery of FACETS training courses (designed by the research team) for health care professionals (HCPs). By 2015 more than 1500 pwMS had received the FACETS program, but it is not available in all areas and a face-to-face format may not be suitable for, or appeal to, everyone. For these reasons, the MS Society funded a consultation to explore an alternative Web-based model of service delivery. OBJECTIVE: The aim of this study was to gather views about a Web-based model of service delivery from HCPs who had delivered FACETS and from pwMS who had attended FACETS. METHODS: Telephone consultations were undertaken with FACETS-trained HCPs who had experience of delivering FACETS (n=8). Three face-to-face consultation groups were held with pwMS who had attended the FACETS program: London (n=4), Liverpool (n=4), and Bristol (n=7). The interviews and consultation groups were digitally recorded and transcribed. A thematic analysis was undertaken to identify key themes. Toward the end of the study, a roundtable meeting was held to discuss outcomes from the consultation with representatives from the MS Society, HCPs, and pwMS. RESULTS: Key challenges and opportunities of designing and delivering an integrated Web-based version of FACETS and maintaining user engagement were identified across 7 themes (delivery, online delivery, design, group, engagement, interactivity, and HCP relationships). Particularly of interest were themes related to replicating the group dynamics and the lack of high-quality solutions that would support the FACETS' weekly homework tasks and symptom monitoring and management. CONCLUSIONS: A minimum viable Web-based version of FACETS was suggested as the best starting point for a phased implementation, enabling a solution that could then be added to over time. It was also proposed that a separate study should look to create a free stand-alone digital toolkit focusing on the homework elements of FACETS. This study has commenced with a first version of the toolkit in development involving pwMS throughout the design and build stages to ensure a user-centered solution

    Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope

    Get PDF
    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of Δm322=(3.1±0.9)103\Delta m_{32}^2=(3.1\pm 0.9)\cdot 10^{-3} eV2^2 is obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure
    corecore