94 research outputs found

    Autistic College Students and COVID-19: Anxiety, Support Needs and Responses by Specialized Programs

    Get PDF
    Providing resources and support to college students during the COVID-19 global pandemic has produced unique challenges for all students, particularly those with autism. In March 2020, halfway through the spring term, the COVID-19 global pandemic forced most institutions of higher education across the country to move all instruction and support to an online, remote format, including those for students with autism. Colleges and autism support programs are now grappling with how to effectively support students amid a global pandemic. Yet there is little information available about how students’ needs have changed with this new environment. In this exploratory study, 76 college students with autism from across the country answered a series of questions (both Likert scale and open-ended) about their anxieties related to COVID-19 and attending college. The data were analyzed using descriptive statistics and thematic analysis. Results revealed that students are most anxious about getting sick or spreading COVID-19 to others and least anxious about wearing masks and needing to socially distance. This paper also profiles the adjustments made to several college autism support programs (led by the authors) in order to accommodate the changes to college campuses and the impact on student needs. The survey results and recent experiences across programs will inform recommendations for colleges as they build toward more inclusive, supportive campus environments and respond to crises like the pandemic

    Reference Group Data for the Functional Gait Assessment

    Get PDF
    Background and Purpose: The Functional Gait Assessment (FGA) is a clinical tool for evaluating performance in walking. The purpose of this study was to determine age-referenced norms for performance on the FGA in community-living older adults. Subjects: Subjects were 200 adults, ages 40 to 89 years, living independently. Methods: Each subject completed the FGA one time and was scored simultaneously by 2 testers. Results: The intraclass correlation coefficient for interrater reliability was .93. Mean scores for the FGA ranged from 29/30 for adults in their 40s to 21/30 for adults in their 80s. Discussion and Conclusion: Patient performance on the FGA can be compared with age-referenced norms for expected performance. Further research is needed to determine the FGA\u27s usefulness in tracking clinical changes or predicting falls. The FGA is a reliable test for people without disease, and it is able to detect decreases in gait performance among typical older adults

    Teleoncology in the Department of Defense: A tale of two systems

    Get PDF
    ABSTRACT Two telemedicine networks were developed for the purpose of conducting multidisciplinary oncology ("teleoncology") conferences. The infrastructure of each system differed: one system was Internet-based; the other was delivered via Integrated Services Digital Network (ISDN) lines. The purpose of this study was to describe the infrastructure and cost, consultative process, technical aspects, and conference format of the two teleoncology programs. The two systems' technical aspects, participant satisfaction with the systems, and conference participation were compared qualitatively. Assessment of the technical aspects of the systems suggested that each had distinct advantages. Survey results indicated that provider satisfaction with the technical and logistical aspects of each type of teleoncology conference was high. The present study may prove helpful for individuals who are considering implementing their own teleoncology programs. T ELEM ED ICIN E H A S BEEN D ESCRIBED as the practice of medicine at a distance. 1 Telemedicine applications have been used in nearly every field of medicine, including radiology, psychiatry, dermatology, and cardiology. One aspect of telemedicine that has become increasingly common is teleoncology, the delivery of oncology services from a distance. 1 Teleoncology programs offer a variety of potential benefits, including enhancing primary care managers' access to referrals, expand opportunities for continuing medical education (CME) credits, reduction of unnecessary referrals, and smooth coordination of patient care. To date, only a handful of studies have examined the topic of teleoncology. Investigators have looked at the use of interactive video to provide psychosocial support, 2 the use of interactive video and proxy examiners to provide direct patient care, 3 and the use of teleoncology to facilitate consultation by cancer specialists to geographically remote primary care providers

    A Synoptical Classification of the Bivalvia (Mollusca)

    Get PDF
    The following classification summarizes the suprageneric taxono-my of the Bivalvia for the upcoming revision of the Bivalvia volumes of the Treatise on Invertebrate Paleontology, Part N. The development of this classification began with Carter (1990a), Campbell, Hoeks-tra, and Carter (1995, 1998), Campbell (2000, 2003), and Carter, Campbell, and Campbell (2000, 2006), who, with assistance from the United States National Science Foundation, conducted large-scale morphological phylogenetic analyses of mostly Paleozoic bivalves, as well as molecular phylogenetic analyses of living bivalves. Dur-ing the past several years, their initial phylogenetic framework has been revised and greatly expanded through collaboration with many students of bivalve biology and paleontology, many of whom are coauthors. During this process, all available sources of phylogenetic information, including molecular, anatomical, shell morphological, shell microstructural, bio- and paleobiogeographic as well as strati-graphic, have been integrated into the classification. The more recent sources of phylogenetic information include, but are not limited to, Carter (1990a), Malchus (1990), J. Schneider (1995, 1998a, 1998b, 2002), T. Waller (1998), Hautmann (1999, 2001a, 2001b), Giribet and Wheeler (2002), Giribet and Distel (2003), Dreyer, Steiner, and Harper (2003), Matsumoto (2003), Harper, Dreyer, and Steiner (2006), Kappner and Bieler (2006), Mikkelsen and others (2006), Neulinger and others (2006), Taylor and Glover (2006), Kříž (2007), B. Morton (2007), Taylor, Williams, and Glover (2007), Taylor and others (2007), Giribet (2008), and Kirkendale (2009). This work has also benefited from the nomenclator of bivalve families by Bouchet and Rocroi (2010) and its accompanying classification by Bieler, Carter, and Coan (2010).This classification strives to indicate the most likely phylogenetic position for each taxon. Uncertainty is indicated by a question mark before the name of the taxon. Many of the higher taxa continue to undergo major taxonomic revision. This is especially true for the superfamilies Sphaerioidea and Veneroidea, and the orders Pectinida and Unionida. Because of this state of flux, some parts of the clas-sification represent a compromise between opposing points of view. Placement of the Trigonioidoidea is especially problematic. This Mesozoic superfamily has traditionally been placed in the order Unionida, as a possible derivative of the superfamily Unionoidea (see Cox, 1952; Sha, 1992, 1993; Gu, 1998; Guo, 1998; Bieler, Carter, & Coan, 2010). However, Chen Jin-hua (2009) summarized evi-dence that Trigonioidoidea was derived instead from the superfamily Trigonioidea. Arguments for these alternatives appear equally strong, so we presently list the Trigonioidoidea, with question, under both the Trigoniida and Unionida, with the contents of the superfamily indicated under the Trigoniida.Fil: Carter, Joseph G.. University of North Carolina; Estados UnidosFil: Altaba, Cristian R.. Universidad de las Islas Baleares; EspañaFil: Anderson, Laurie C.. South Dakota School of Mines and Technology; Estados UnidosFil: Araujo, Rafael. Consejo Superior de Investigaciones Cientificas. Museo Nacional de Ciencias Naturales; EspañaFil: Biakov, Alexander S.. Russian Academy of Sciences; RusiaFil: Bogan, Arthur E.. North Carolina State Museum of Natural Sciences; Estados UnidosFil: Campbell, David. Paleontological Research Institution; Estados UnidosFil: Campbell, Matthew. Charleston Southern University; Estados UnidosFil: Chen, Jin Hua. Chinese Academy of Sciences. Nanjing Institute of Geology and Palaeontology; República de ChinaFil: Cope, John C. W.. National Museum of Wales. Department of Geology; Reino UnidoFil: Delvene, Graciela. Instituto Geológico y Minero de España; EspañaFil: Dijkstra, Henk H.. Netherlands Centre for Biodiversity; Países BajosFil: Fang, Zong Jie. Chinese Academy of Sciences; República de ChinaFil: Gardner, Ronald N.. No especifica;Fil: Gavrilova, Vera A.. Russian Geological Research Institute; RusiaFil: Goncharova, Irina A.. Russian Academy of Sciences; RusiaFil: Harries, Peter J.. University of South Florida; Estados UnidosFil: Hartman, Joseph H.. University of North Dakota; Estados UnidosFil: Hautmann, Michael. Paläontologisches Institut und Museum; SuizaFil: Hoeh, Walter R.. Kent State University; Estados UnidosFil: Hylleberg, Jorgen. Institute of Biology; DinamarcaFil: Jiang, Bao Yu. Nanjing University; República de ChinaFil: Johnston, Paul. Mount Royal University; CanadáFil: Kirkendale, Lisa. University Of Wollongong; AustraliaFil: Kleemann, Karl. Universidad de Viena; AustriaFil: Koppka, Jens. Office de la Culture. Section d’Archéologie et Paléontologie; SuizaFil: Kříž, Jiří. Czech Geological Survey. Department of Sedimentary Formations. Lower Palaeozoic Section; República ChecaFil: Machado, Deusana. Universidade Federal do Rio de Janeiro; BrasilFil: Malchus, Nikolaus. Institut Català de Paleontologia; EspañaFil: Márquez Aliaga, Ana. Universidad de Valencia; EspañaFil: Masse, Jean Pierre. Universite de Provence; FranciaFil: McRoberts, Christopher A.. State University of New York at Cortland. Department of Geology; Estados UnidosFil: Middelfart, Peter U.. Australian Museum; AustraliaFil: Mitchell, Simon. The University of the West Indies at Mona; JamaicaFil: Nevesskaja, Lidiya A.. Russian Academy of Sciences; RusiaFil: Özer, Sacit. Dokuz Eylül University; TurquíaFil: Pojeta, John Jr.. National Museum of Natural History; Estados UnidosFil: Polubotko, Inga V.. Russian Geological Research Institute; RusiaFil: Pons, Jose Maria. Universitat Autònoma de Barcelona; EspañaFil: Popov, Sergey. Russian Academy of Sciences; RusiaFil: Sanchez, Teresa Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Sartori, André F.. Field Museum of National History; Estados UnidosFil: Scott, Robert W.. Precision Stratigraphy Associates; Estados UnidosFil: Sey, Irina I.. Russian Geological Research Institute; RusiaFil: Signorelli, Javier Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; ArgentinaFil: Silantiev, Vladimir V.. Kazan Federal University; RusiaFil: Skelton, Peter W.. Open University. Department of Earth and Environmental Sciences; Reino UnidoFil: Steuber, Thomas. The Petroleum Institute; Emiratos Arabes UnidosFil: Waterhouse, J. Bruce. No especifica;Fil: Wingard, G. Lynn. United States Geological Survey; Estados UnidosFil: Yancey, Thomas. Texas A&M University; Estados Unido

    The discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition

    Get PDF
    Acetylation of histone lysine residues is one of the most well-studied post-translational modifications of chromatin, selectively recognized by bromodomain “reader” modules. Inhibitors of the bromodomain and extra terminal domain (BET) family of bromodomains have shown profound anticancer and anti-inflammatory properties, generating much interest in targeting other bromodomain-containing proteins for disease treatment. Herein, we report the discovery of I-BRD9, the first selective cellular chemical probe for bromodomain-containing protein 9 (BRD9). I-BRD9 was identified through structure-based design, leading to greater than 700-fold selectivity over the BET family and 200-fold over the highly homologous bromodomain-containing protein 7 (BRD7). I-BRD9 was used to identify genes regulated by BRD9 in Kasumi-1 cells involved in oncology and immune response pathways and to the best of our knowledge, represents the first selective tool compound available to elucidate the cellular phenotype of BRD9 bromodomain inhibition

    AD51B in Familial Breast Cancer

    Get PDF
    Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259) and population controls (n = 3586) from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR): 1.15, 95% confidence interval (CI): 1.11–1.19, P = 8.88 x 10−16) and among familial cases (OR: 1.24, 95% CI: 1.16–1.32, P = 6.19 x 10−11), compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore