42 research outputs found

    Persistence of Primary and Secondary Pollutants in Delhi : Concentrations and Composition from 2017 through the COVID Pandemic

    Get PDF
    We assess impacts of the 2020 COVID-19 lockdown on ambient air quality in Delhi, building on over three years of real-time measurements of black carbon (BC) and nonrefractory submicrometer aerosol (NR-PM1) composition from the Delhi Aerosol Supersite and public data from the regulatory monitoring network. We performed source apportionment of organic aerosol (OA) and robust statistical analyses to differentiate lockdown-related impacts from baseline seasonal and interannual variability. The primary pollutants NOx, CO, and BC were most reduced, primarily due to lower transportation emissions. Local and regional emissions such as agricultural burning decreased during the lockdown. PM2.5 declined but remained well above WHO guidelines. Despite the lockdown, NR-PM1 changed only moderately compared to prior years. Differences in the trends of hydrocarbon-like OA and BC suggest that some sources of primary aerosol may have increased. Despite notable reductions in some primary pollutants, the lockdown restrictions led to rather small perturbations in the primary fraction of NR-PM1, with secondary aerosol continuing to dominate. Overall, our results demonstrate the impact of secondary and primary pollution on Delhi's air quality and show that large changes in emissions within Delhi alone are insufficient to bring about needed improvements in air quality.Peer reviewe

    Persistence of Primary and Secondary Pollutants in Delhi : Concentrations and Composition from 2017 through the COVID Pandemic

    Get PDF
    We assess impacts of the 2020 COVID-19 lockdown on ambient air quality in Delhi, building on over three years of real-time measurements of black carbon (BC) and nonrefractory submicrometer aerosol (NR-PM1) composition from the Delhi Aerosol Supersite and public data from the regulatory monitoring network. We performed source apportionment of organic aerosol (OA) and robust statistical analyses to differentiate lockdown-related impacts from baseline seasonal and interannual variability. The primary pollutants NOx, CO, and BC were most reduced, primarily due to lower transportation emissions. Local and regional emissions such as agricultural burning decreased during the lockdown. PM2.5 declined but remained well above WHO guidelines. Despite the lockdown, NR-PM1 changed only moderately compared to prior years. Differences in the trends of hydrocarbon-like OA and BC suggest that some sources of primary aerosol may have increased. Despite notable reductions in some primary pollutants, the lockdown restrictions led to rather small perturbations in the primary fraction of NR-PM1, with secondary aerosol continuing to dominate. Overall, our results demonstrate the impact of secondary and primary pollution on Delhi's air quality and show that large changes in emissions within Delhi alone are insufficient to bring about needed improvements in air quality.Peer reviewe

    Editorial:the shadowlands of science communication in academia — definitions, problems, and possible solutions

    Get PDF
    Science communication is an important part of research, including in the geosciences, as it can benefit society, science, and make science more publicly accountable. However, much of this work takes place in “shadowlands” that are neither fully seen nor understood. These shadowlands are spaces, aspects, and practices of science communication which are not clearly defined and may be harmful with respect to the science being communicated or for the science communicators themselves. With the increasing expectation in academia that researchers should participate in science communication, there is a need to address some of the major issues that lurk in these shadowlands. Here the editorial team of Geoscience Communication seeks to shine a light on the shadowlands of geoscience communication and suggest some solutions and examples of effective practice. The issues broadly fall under three categories: 1) harmful or unclear objectives; 2) poor quality and lack of rigor; and 3) exploitation of science communicators working within academia. Ameliorating these will require: 1) clarifying objectives and audiences; 2) adequately training science communicators; and 3) giving science communication equivalent recognition to other professional activities. By shining a light on the shadowlands of science communication in academia and proposing potential remedies, our aim is to cultivate a more transparent and responsible landscape for geoscience communication—a transformation that will ultimately benefit the progress of science, the welfare of scientists, and more broadly society at large

    Measurement report : New particle formation characteristics at an urban and a mountain station in northern China

    Get PDF
    Atmospheric new particle formation (NPF) events have attracted increasing attention for their contribution to the global aerosol number budget and therefore their effects on climate, air quality and human health. NPF events are regarded as a regional phenomenon, occurring over a large area. Most observations of NPF events in Beijing and its vicinity were conducted in populated areas, whereas observations of NPF events on mountaintops with low anthropogenic emissions are still rare in China. The spatial variation of NPF event intensity has not been investigated in detail by incorporating both urban areas and mountain measurements in Beijing. Here, we provide NPF event characteristics in summer 2018 and 2019 at urban Beijing and a comparison of NPF event characteristics - NPF event frequency, formation rate and growth rate - by comparing an urban Beijing site and a background mountain site separated by similar to 80 km from 14 June to 14 July 2019, as well as giving insights into the connection between both locations. During parallel measurements at urban Beijing and mountain background areas, although the median condensation sink during the first 2 h of the common NPF events was around 0.015(-1) at both sites, there were notable differences in formation rates between the two locations (median of 5.42 cm(-3) s(-1) at the urban site and 1.13 cm(-3) s(-1) at the mountain site during the first 2 h of common NPF events). In addition, the growth rates in the 7-15 nm range for common NPF events at the urban site (median of 7.6 nm h(-1)) were slightly higher than those at the mountain site (median of 6.5 nm h(-1)). To understand whether the observed events were connected, we compared air mass trajectories as well as meteorological conditions at both stations. Favorable conditions for the occurrence of regional NPF events were largely affected by air mass transport. Overall, our results demonstrate a clear inhomogeneity of regional NPF within a distance of similar to 100 km, possibly due to the discretely distributed emission sources.Peer reviewe

    Effect of aerosol composition on the performance of low-cost optical particle counter correction factors

    Get PDF
    There is considerable interest in using low-cost optical particle counters (OPCs) to supplement existing routine air quality networks that monitor particle mass concentrations. In order to do this, low-cost OPC data need to be comparable with particle mass reference instrumentation; however, there is currently no widely agreed upon methodology to accomplish this. Aerosol hygroscopicity is known to be a key parameter to consider when correcting particle mass concentrations derived from low-cost OPCs, particularly at high ambient relative humidity (RH). Correction factors have been developed that apply κ-Köhler theory to correct for the influence of water uptake by hygroscopic aerosols. We have used datasets of co-located reference particle measurements and low-cost OPC (OPC-N2, Alphasense) measurements, collected in four cities on three continents, to explore the performance of this correction factor. We provide evidence that the elevated particle mass concentrations, reported by the low-cost OPC relative to reference instrumentation, are due to bulk aerosol hygroscopicity under different RH conditions, which is determined by aerosol composition and, in particular, the levels of hygroscopic aerosols (sulfate and nitrate). We exploit measurements made in volcanic plumes in Nicaragua, which are predominantly composed of sulfate aerosol, as a natural experiment to demonstrate this behaviour in the ambient atmosphere; the observed humidogram from these measurements closely resembles the calculated pure sulfuric acid humidogram. The results indicate that the particle mass concentrations derived from low-cost OPCs during periods of high RH (>60 %) need to be corrected for aerosol hygroscopic growth. We employed a correction factor based on κ-Köhler theory and observed that the corrected OPC-N2 PM2.5 mass concentrations were within 33 % of reference measurements at all sites. The results indicated that a κ value derived in situ (using suitable reference instrumentation) would lead to the most accurate correction relative to co-located reference instruments. Applying a κ values from the literature in the correction factor also resulted in improved OPC-N2 performance, with the measurements being within 50 % of the reference values. Therefore, for areas where suitable reference instrumentation for developing a local correction factor is lacking, using a literature κ value can result in a reasonable correction. For locations with low levels of hygroscopic aerosols and low RH values, a simple calibration against gravimetric measurements (using suitable reference instrumentation) would likely be sufficient. Whilst this study generated correction factors specific for the Alphasense OPC-N2 sensor, the calibration methodology developed is likely amenable to other low-cost PM sensors

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
    corecore