197 research outputs found

    Computer Generated Images for Quadratic Rational Maps with a Periodic Critical Point

    Full text link
    We describe an algorithm for distinguishing hyperbolic components in the parameter space of quadratic rational maps with a periodic critical point. We then illustrate computer images of the hyperbolic components of the parameter spaces V1 - V4, which were produced using our algorithm. We also resolve the singularities of the projective closure of V5 by blowups, giving an alternative proof that as an algebraic curve, the geometric genus of V5 is 1. This explains why we are unable to produce an image for V5.Comment: 12 pages, 8 figure

    Initial fuel possibilities for the Thorium Molten Salt Reactor

    Get PDF
    The Generation IV International Forum placed six reactors as priority for research and development to compensate for the world\u27s increasing energy demands. Among the six were Molten Salt Reactors (MSRs). These reactors utilize the Th/233U fuel cycle using molten fluoride or chloride salts as coolants. MSRs also have the possibility to use other fissile fuels especially with the first fleet of reactors given the low amount of Uranium-233 available commercially. With the possibility of diverting from using 233U initially, the research presented here will benchmark 233U as a main fuel for MSRs using the Thorium Molten Salt Reactor (TMSR) designed by Billebaud Annick and her team at the Laboratory for Subatomic Particles and Cosmology in France. Uranium-235 and Plutonium-239 will then be tested as suitable initial fuels for the first fleet of TMSRs. These fuels will be compared to the reference data based on neutron flux spectra and breeding capabilities. --Abstract, page iii

    Implementing an interdisciplinary procedure curriculum

    Get PDF
    INTRODUCTION: This curriculum was designed to improve access to procedures for our internal medicine residents. METHODS: We created an interdisciplinary procedure course (IDPC) composed of two simulation sessions and a one-week procedural rotation supervised by multiple specialties including nephrology, cardiology, cardiothoracic anesthesiology, general anesthesiology, and interventional radiology. After the course, residents completed two surveys documenting the number of procedures and their level of confidence on a Likert scale (1 = very unconfident to 5 = very confident) prior to and after completing the curriculum. RESULTS: Sixteen residents participated in the course from September 2021 to June 2022. The collective number of procedures performed by these 16 residents increased from 176 to 343 after a one-week rotation. For arterial lines, the proportion of residents that reported an improvement in confidence scores was 0.44 (95% confidence interval 0.23 to 1, p-value of 0.60). The proportion of residents that had an increase in their confidence performing central lines was 0.63 (95% confidence interval 0.39 to 1, p-value of 0.23). For intubations, the proportion of residents that reported an improvement in confidence was 0.94 (95% confidence interval 0.72 to 1, p-value of 0.0006). CONCLUSION: By collaborating with multiple specialties, residents almost doubled the number of procedures performed during training and reported an increased level of confidence in procedural performance for airway intubation. We learned residents want to improve their access to procedures and described a curriculum that was easily implemented

    The Gene Ontology knowledgebase in 2023

    Get PDF
    The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF
    An embedding technique is presented to estimate standard model tau tau backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed mu mu events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at root s = 13 TeV corresponding to an integrated luminosity of 41.5 fb(-1).Peer reviewe

    Measurement of the t(t)over-bar production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at root s=13TeV

    Get PDF
    A measurement of the top quark-antiquark pair production cross section sigma(t (t) over bar) in proton-proton collisions at a centre-of-mass energy of 13 TeV is presented. The data correspond to an integrated luminosity of 35.9 fb(-1), recorded by the CMS experiment at the CERN LHC in 2016. Dilepton events (e(+/-) mu(-/+), mu(+) mu(-), e(+) e(-)) are selected and the cross section is measured from a likelihood fit. For a top quark mass parameter in the simulation of m(t)(MC) = 172.5 GeV the fit yields a measured cross section sigma(t (t) over bar) = 803 +/- 2 (stat) +/- 25 (syst) +/- 20 (lumi) pb, in agreement with the expectation from the standard model calculation at next-to-next-to-leading order. A simultaneous fit of the cross section and the top quark mass parameter in the POWHEG simulation is performed. The measured value of m(t)(MC) = 172.33 +/- 0.14 (stat)(-0.72)(+0.66) (syst) GeV is in good agreement with previous measurements. The resulting cross section is used, together with the theoretical prediction, to determine the top quark mass and to extract a value of the strong coupling constant with different sets of parton distribution functions.Peer reviewe

    Search for Physics beyond the Standard Model in Events with Overlapping Photons and Jets

    Get PDF
    Results are reported from a search for new particles that decay into a photon and two gluons, in events with jets. Novel jet substructure techniques are developed that allow photons to be identified in an environment densely populated with hadrons. The analyzed proton-proton collision data were collected by the CMS experiment at the LHC, in 2016 at root s = 13 TeV, and correspond to an integrated luminosity of 35.9 fb(-1). The spectra of total transverse hadronic energy of candidate events are examined for deviations from the standard model predictions. No statistically significant excess is observed over the expected background. The first cross section limits on new physics processes resulting in such events are set. The results are interpreted as upper limits on the rate of gluino pair production, utilizing a simplified stealth supersymmetry model. The excluded gluino masses extend up to 1.7 TeV, for a neutralino mass of 200 GeV and exceed previous mass constraints set by analyses targeting events with isolated photons.Peer reviewe

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe
    corecore