383 research outputs found

    Immune Response in Gingival Disease: Role of Macrophage Migration Inhibitory Factor

    Get PDF
    The term periodontal disease encompasses a wide variety of chronic inflammatory conditions of the periodontium, including gingivitis and periodontitis. The gingival disease is an infectious process, which occurs due to the progression of untreated gingivitis. It is characterized by a destructive inflammatory process that affects the supporting tissues of the teeth, which causes the loss of the dental organs. As a result of inflammation, a wide range of cytokines and inflammatory mediators together contribute to tissue degradation and bone resorption. However, some molecules that have not been studied in the inflammatory process of this disease, such as the macrophage migration inhibitory factor (MIF) which is considered an important cytokine of the innate immune system; it is expressed constitutively in immune and nonimmune cells, and it is released immediately against bacterial stimuli, hypoxia, and proliferative signals. MIF has been described in some chronic degenerative, inflammatory, and autoimmune diseases. Previous studies have described that in murine models of periodontitis, MIF promotes the activation and differentiation of osteoclasts that could position this cytokine in the immunopathogenesis of gingival disease in humans

    Periodontal Disease and Nuclear and Oxidative DNA Damage

    Get PDF
    Oral health is an important aspect of the overall health status of an individual. DNA damage has been associated with oral health and dental factors due to the increased of oxidative stress (OxS). DNA damage can produce a wide range of effects on human health. These effects could appear immediately, but others do not become evident much later. Chronic diseases have been study to understand their mechanisms, clinical implications, and the development of secondary disease such as cancer. Periodontitis is one of the most common oral diseases. It is an inflammatory chronic infectious disease, which is characterized by the loss of supporting tissues and tooth loss caused by periodontopathogens and long-term release of reactive oxygen species (ROS); thus, oxidative stress is increased during periodontitis. Oxidative stress can produce DNA damage, including the oxidation of nucleosides, which could cause DNA strand break. This oxidative damage leads the formation of micronuclei (MN) a marker of nuclear damage. Also, oxidative stress increased 8-hydroxy-2′-deoxyguanosine levels which are the most common stable product of oxidative DNA damage

    Genomic Instability Decreases in HIV Patient by Complementary Therapy with Rosmarinus officinalis Extracts

    Get PDF
    Genomic instability is associated with increased oxidative stress in patients with human immunodeficiency virus (HIV). The aim of this study was to determine the effect of intake of methanolic and aqueous extracts of Rosmarinus officinalis on genomic instability in HIV patients. We studied 67 HIV patients under pharmacological treatment with ATRIPLA who were divided into three groups: group 1, patients under ATRIPLA antiretroviral therapy; group 2, patients with ATRIPLA and rosemary aqueous extract (4 g/L per day); and group 3, patients with ATRIPLA and rosemary methanolic extract (400 mg/day). The genomic instability was evaluated through the buccal micronucleus cytome assay. Oral epithelial cells were taken at the beginning and 1 and 4 months later. The groups that received the pharmacological therapy with ATRIPLA and the complementary therapy with R. officinalis extracts showed a decrease in the number of cells with micronuclei and nuclear abnormalities compared with the group that only received ATRIPLA. The complementary therapy with R. officinalis decreased the genomic instability in HIV patients

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF
    corecore