694 research outputs found
Methods for exomoon characterisation: combining transit photometry and the Rossiter-McLaughlin effect
It has been suggested that moons around transiting exoplanets may cause
observable signal in transit photometry or in the Rossiter-McLaughlin (RM)
effect. In this paper a detailed analysis of parameter reconstruction from the
RM effect is presented for various planet-moon configurations, described with
20 parameters. We also demonstrate the benefits of combining photometry with
the RM effect. We simulated 2.7x10^9 configurations of a generic transiting
system to map the confidence region of the parameters of the moon, find the
correlated parameters and determine the validity of reconstructions. The main
conclusion is that the strictest constraints from the RM effect are expected
for the radius of the moon. In some cases there is also meaningful information
on its orbital period. When the transit time of the moon is exactly known, for
example, from transit photometry, the angle parameters of the moon's orbit will
also be constrained from the RM effect. From transit light curves the mass can
be determined, and combining this result with the radius from the RM effect,
the experimental determination of the density of the moon is also possible.Comment: 10 pages, 7 figures, accepted for publication in MNRA
Systematical Approach to the Exact Solution of the Dirac Equation for A Special Form of the Woods-Saxon Potential
Exact solution of the Dirac equation for a special form of the Woods-Saxon
potential is obtained for the s-states. The energy eigenvalues and
two-component spinor wave functions are derived by using a systematical method
which is called as Nikiforov-Uvarov. It is seen that the energy eigenvalues
strongly depend on the potential parameters. In addition, it is also shown that
the non-relativistic limit can be reached easily and directly.Comment: 10 pages, no figures, submitted for Publicatio
Segond's fracture: a biomechanical cadaveric study using navigation
Background Segond’s fracture is a well-recognised radiological
sign of an anterior cruciate ligament (ACL) tear.
While previous studies evaluated the role of the anterolateral
ligament (ALL) and complex injuries on rotational
stability of the knee, there are no studies on the biomechanical
effect of Segond’s fracture in an ACL deficient
knee. The aim of this study was to evaluate the effect of a
Segond’s fracture on knee rotation stability as evaluated by
a navigation system in an ACL deficient knee.
Materials and methods Three different conditions were
tested on seven knee specimens: intact knee, ACL deficient
knee and ACL deficient knee with Segond’s fracture. Static
and dynamic measurements of anterior tibial translation
(ATT) and axial tibial rotation (ATR) were recorded by the
navigation system (2.2 OrthoPilot ACL navigation system
B. Braun Aesculap, Tuttlingen, Germany).
Results Static measurements at 30 showed that the mean
ATT at 30 of knee flexion was 5.1 ± 2.7 mm in the ACL
intact condition, 14.3 ± 3.1 mm after ACL cut
(P = 0.005), and 15.2 ± 3.6 mm after Segond’s fracture
(P = 0.08). The mean ATR at 30 of knee flexion was
20.7 ± 4.8 in the ACL intact condition, 26.9 ± 4.1 in
the ACL deficient knee (P[0.05) and 30.9 ± 3.8 after
Segond’s fracture (P = 0.005). Dynamic measurements
during the pivot-shift showed that the mean ATT was
7.2 ± 2.7 mm in the intact knee, 9.1 ± 3.3 mm in the
ACL deficient knee(P = 0.04) and 9.7 ± 4.3 mm in the
ACL deficient knee with Segond’s fracture (P = 0.07).
The mean ATR was 9.6 ± 1.8 in the intact knee,
12.3 ± 2.3 in the ACL deficient knee (P[0.05) and
19.1 ± 3.1 in the ACL deficient knee with Segond’s
lesion (P = 0.016).
Conclusion An isolated lesion of the ACL only affects
ATT during static and dynamic measurements, while the
addition of Segond’s fracture has a significant effect on
ATR in both static and dynamic execution of the pivot-shift
test, as evaluated with the aid of navigation
Identification of Shell Colour Pigments in Marine Snails Clanculus pharaonius and C. margaritarius (Trochoidea; Gastropoda)
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. https://creativecommons.org/publicdomain/zero/1.0/
The attached file is the published version of the article
Automatic Identification of Defects on Eggshell Through a Multispectral Vision System
The objective of this research was to develop an off-line artificial vision system to automatically detect defective eggshells, i.e., dirty or cracked eggshells, by employing multispectral images with the final purpose to adapt the system to an on-line grading machine. In particular, this work was focused to study the feasibility of identifying organic stains on brown eggshells (dirty eggshell), caused by blood, feathers, feces, etc., from natural stains, caused by deposits of pigments on the outer layer of clean eggshells. During the analysis a total of 384 eggs were evaluated (clean: 148, dirty: 236). Dirty samples were evaluated visually in order to classify them according to the kind of defect (blood, feathers, and white, clear or dark feces), and clean eggshells were classified on the basis of the colour of the natural stains (clear or dark). For each sample digital images were acquired by employing a Charged Coupled Device (CCD) camera endowed with 15 monochromatic filters (440-940 nm). A Matlab® function was developed in order to automate the process and analyze images, with the aim to classify samples as clean or dirty. The program was constituted by three major steps: first, the research of an opportune combination of monochromatic images in order to isolate the eggshell from the background; second, the detection of the dirt stains; third, the classification of the images samples into the dirty or clean group on the basis of geometric characteristics of the stains (area in pixel). The proposed classification algorithm was able to correctly classify near 98% of the samples with a very low processing time (0.05s). The robustness of the proposed classification was observed applying an external validation to a second set of samples (n = 178), obtaining similar percentage of correctly classified samples (97%)
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Mechanisms underlying purinergic P2X3 receptor-mediated mechanical allodynia induced in diabetic rats
<p>Abstract</p> <p>Background</p> <p>Diabetic neuropathy is a common neuropathy associated with paresthaesia and pain. The mechanisms underlying the painful conditions are not well understood. The aim of this study is to investigate the participation of purinergic P2X3 receptors in painful diabetic neuropathy.</p> <p>Results</p> <p>Diabetes was induced by an intraperitoneal injection of streptozotocin (STZ). We showed that mechanical allodynia was induced two weeks after a STZ injection and lasted for at least another seven weeks. The mechanical allodynia was significantly attenuated by peripheral administration of the P2X receptor antagonists, PPADS or TNP-ATP. DiI was subcutaneously injected into the rat hindpaw to label hindpaw-innervated dorsal root ganglion (DRG) neurons. ATP activated fast-inactivating P2X3 receptor-mediated currents in the labeled DRG neurons were studied. ATP responses in STZ-treated rats were ~2-fold larger than those in control rats. Furthermore, the expression of P2X3 receptor proteins in the plasma membrane of L4-6 DRGs of STZ rats was significantly enhanced while the total expression of P2X3 receptors remained unaltered.</p> <p>Conclusions</p> <p>These results indicate that a large enhancement of P2X3 receptor activity and an increase in the membrane expression of P2X3 receptors contribute to the development of chronic pain in STZ-induced diabetic rats and suggest a possible target for the treatment of diabetic neuropathic pain.</p
- …
