618 research outputs found

    Chromosome 2p14 Is Linked to Susceptibility to Leprosy

    Get PDF
    BACKGROUND: A genetic component to the etiology of leprosy is well recognized but the mechanism of inheritance and the genes involved are yet to be fully established. METHODOLOGY: A genome-wide single nucleotide polymorphism (SNP) based linkage analysis was carried out using 23 pedigrees, each with 3 to 7 family members affected by leprosy. Multipoint parametric and non-parametric linkage analyses were performed using MERLIN 1.1.1. PRINCIPAL FINDINGS: Genome-wide significant evidence for linkage was identified on chromosome 2p14 with a heterogeneity logarithm of odds (HLOD) score of 3.51 (rs1106577) under a recessive model of inheritance, while suggestive evidence was identified on chr.4q22 (HLOD 2.92, rs1349350, dominant model), chr. 8q24 (HLOD 2.74, rs1618523, recessive model) and chr.16q24 (HLOD 1.93, rs276990 dominant model). Our study also provided moderate evidence for a linkage locus on chromosome 6q24-26 by non-parametric linkage analysis (rs6570858, LOD 1.54, p = 0.004), overlapping a previously reported linkage region on chromosome 6q25-26. CONCLUSION: A genome-wide linkage analysis has identified a new linkage locus on chromosome 2p14 for leprosy in Pedigrees from China

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    The Distribution of Phosphatidylinositol 4,5-Bisphosphate in Acinar Cells of Rat Pancreas Revealed with the Freeze-Fracture Replica Labeling Method

    Get PDF
    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a phospholipid that has been implicated in multiple cellular activities. The distribution of PI(4,5)P2 has been analyzed extensively using live imaging of the GFP-coupled phospholipase C-δ1 pleckstrin homology domain in cultured cell lines. However, technical difficulties have prevented the study of PI(4,5)P2 in cells of in vivo tissues. We recently developed a method to analyze the nanoscale distribution of PI(4,5)P2 in cultured cells by using the quick-freezing and freeze-fracture replica labeling method. In principle, this method can be applied to any cell because it does not require the expression of artificial probes. In the present study, we modified the method to study cells of in vivo tissues and applied it to pancreatic exocrine acinar cells of the rat. We found that PI(4,5)P2 in the plasma membrane is distributed in an equivalent density in the apical and basolateral domains, but exists in a significantly higher concentration in the gap junction. The intracellular organelles did not show labeling for PI(4,5)P2. The results are novel or different from the reported distribution patterns in cell lines and highlight the importance of studying cells differentiated in vivo

    Chemotactic activity of extracellular nucleotideson human immune cells.

    Get PDF
    Purinergic P2 receptors are a class of plasma membrane receptors that are express in many tissues and are ligated by extracellular nucleotides [such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), uridine 5–triphosphate (UTP) and uridine 5–diphosphate (UDP)], which are released as a consequence of cell damage, cell stress, bacterial infection or other noxious stimuli. According to the molecular structure, P2 receptors are divided into two subfamilies: P2X and P2Y receptors. The P2X receptors are ligand-gated channels, whereas P2Y receptors are G-protein-coupled seven-membrane-spanning receptors. Several studies indicate that nucleotides play an important role in immune response modulation through their action on multiple cell types, including monocytes, mast cells, dendritic cells, neutrophils, and eosinophils. Recent work by our group and others identified extracellular nucleotides as chemotaxins for various human immune cells, including eosinophils, neutrophils and dendritic cells. In this review, we summarise recent findings in this field and put forward a hypothesis on the role of P2 receptors in the early recruitment of human immune cells to the site of inflammation

    Conditional Stat1 Ablation Reveals the Importance of Interferon Signaling for Immunity to Listeria monocytogenes Infection

    Get PDF
    Signal transducer and activator of transcription 1 (Stat1) is a key player in responses to interferons (IFN). Mutations of Stat1 cause severe immune deficiencies in humans and mice. Here we investigate the importance of Stat1 signaling for the innate and secondary immune response to the intracellular bacterial pathogen Listeria monocytogenes (Lm). Cell type-restricted ablation of the Stat1 gene in naïve animals revealed unique roles in three cell types: macrophage Stat1 signaling protected against lethal Lm infection, whereas Stat1 ablation in dendritic cells (DC) did not affect survival. T lymphocyte Stat1 reduced survival. Type I IFN (IFN-I) signaling in T lymphocytes reportedly weakens innate resistance to Lm. Surprisingly, the effect of Stat1 signaling was much more pronounced, indicating a contribution of Stat1 to pathways other than the IFN-I pathway. In stark contrast, Stat1 activity in both DC and T cells contributed positively to secondary immune responses against Lm in immunized animals, while macrophage Stat1 was dispensable. Our findings provide the first genetic evidence that Stat1 signaling in different cell types produces antagonistic effects on innate protection against Lm that are obscured in mice with complete Stat1 deficiency. They further demonstrate a drastic change in the cell type-dependent Stat1 requirement for memory responses to Lm infection

    Chemical–Genetic Profiling of Imidazo[1,2-a]pyridines and -Pyrimidines Reveals Target Pathways Conserved between Yeast and Human Cells

    Get PDF
    Small molecules have been shown to be potent and selective probes to understand cell physiology. Here, we show that imidazo[1,2-a]pyridines and imidazo[1,2-a]pyrimidines compose a class of compounds that target essential, conserved cellular processes. Using validated chemogenomic assays in Saccharomyces cerevisiae, we discovered that two closely related compounds, an imidazo[1,2-a]pyridine and -pyrimidine that differ by a single atom, have distinctly different mechanisms of action in vivo. 2-phenyl-3-nitroso-imidazo[1,2-a]pyridine was toxic to yeast strains with defects in electron transport and mitochondrial functions and caused mitochondrial fragmentation, suggesting that compound 13 acts by disrupting mitochondria. By contrast, 2-phenyl-3-nitroso-imidazo[1,2-a]pyrimidine acted as a DNA poison, causing damage to the nuclear DNA and inducing mutagenesis. We compared compound 15 to known chemotherapeutics and found resistance required intact DNA repair pathways. Thus, subtle changes in the structure of imidazo-pyridines and -pyrimidines dramatically alter both the intracellular targeting of these compounds and their effects in vivo. Of particular interest, these different modes of action were evident in experiments on human cells, suggesting that chemical–genetic profiles obtained in yeast are recapitulated in cultured cells, indicating that our observations in yeast can: (1) be leveraged to determine mechanism of action in mammalian cells and (2) suggest novel structure–activity relationships

    Algicidal activity of polyunsaturated fatty acids derived from Ulva fasciata and U. pertusa (Ulvaceae, Chlorophyta) on phytoplankton

    Get PDF
    Isolation of algicidal compounds from Ulva fasciata revealed that the algicidal substances were the polyunsaturated fatty acids (PUFAs) as hexadeca-4,7,10,13-tetraenoic acid (HDTA) C16:4 n-3, octadeca-6,9,12,15- tetraenoic acid (ODTA) C18:4 n-3, α-linolenic acid (ALA) C18:3 n-3 and linoleic acid (LA) C18:2 n-6. The fatty acid composition of four species of Ulvaceae (U. fasciata, U. pertusa, U. arasakii and U. conglobota) was analyzed by capillary gas chromatography to investigate the relationship with the algicidal activity. The results indicate that highly algicidal species, U. fasciata and U. pertusa, showed higher contents of C16:4 n-3, C18:3 n-3, and C18:4 n-3. Concentrations of these PUFAs released from the seaweed in the culture medium were also analyzed. These PUFAs were found to be significantly active against Chattonella antiqua, C. marina, Fibrocapsa japonica, Heterosigma akashiwo, Karenia mikimotoi, moderately effective against Heterocapsa circularisquama, Prorocentrum minimum, P. sigmoides, Scrippsiella trochoidea, whereas low effective against Alexandrium catenella and Cochlodinium polykrikoides. It is suggested that the PUFAs are useful mitigation agents to remove several harmful effects without causing detrimental effects on surrounding marine living organisms

    Dense sampling of bird diversity increases power of comparative genomics (vol 587, pg 252, 2020)

    Get PDF
    Publishe
    corecore