266 research outputs found

    Causality in real-time dynamic substructure testing

    Get PDF
    Causality, in the bond graph sense, is shown to provide a conceptual framework for the design of real-time dynamic substructure testing experiments. In particular, known stability problems with split-inertia substructured systems are reinterpreted as causality issues within the new conceptual framework. As an example, causality analysis is used to provide a practical solution to a split-inertia substructuring problem and the solution is experimentally verified

    Charge-conjugation violating neutrino interactions in supernovae

    Get PDF
    The well known charge conjugation violating interactions in the Standard Model increase neutrino- and decrease anti-neutrino- nucleon cross sections. This impacts neutrino transport in core collapse supernovae through "recoil" corrections of order the neutrino energy kk over the nucleon mass MM. All k/Mk/M corrections to neutrino transport deep inside a protoneutron star are calculated from angular integrals of the Boltzmann equation. We find these corrections significantly modify neutrino currents at high temperatures. This produces a large mu and tau number for the protoneutron star and can change the ratio of neutrons to protons. In addition, the relative size of neutrino mean free paths changes. At high temperatures, the electron anti-neutrino mean free path becomes {\it longer} than that for mu or tau neutrinos.Comment: 14 pages, 2 included ps figures, subm. to Phys. Rev.

    Bond graph based control and substructuring

    Get PDF
    A bond graph framework giving a unified treatment of both physical-model based control and hybrid experimental–numerical simulation (also known as real-time dynamic substructuring) is presented. The framework consists of two subsystems, one physical and one numerical, connected by a transfer system representing non-ideal actuators and sensors. Within this context, a two-stage design procedure is proposed: firstly, design and/or analysis of the numerical and physical subsystem interconnection as if the transfer system were not present; and secondly removal of as much as possible of the transfer system dynamics while having regard for the stability margins established in the first stage. The approach allows the use of engineering insight backed up by well-established control theory; a number of possibilities for each stage are given. The approach is illustrated using two laboratory systems: an experimental mass-spring-damper substructured system and swing up and hold control of an inverted pendulum. Experimental results are provided in the latter case

    The Opportunity Cost of the Conservation Reserve Program: A Kansas Land Example

    Get PDF
    The effects of the Conservation Reserve Program (CRP) on farmland values is investigated using a set of parcel-level data for land sales in Kansas over the period 1998 to 2014. The sales data are used to estimate a hedonic model of land values that allows for the opportunity cost of CRP enrollment to vary across space and time. Factors impacting the opportunity costs include the relative productivity of land, returns to farming, and the time remaining under the CRP contracts. We find that the discount associated with having land under CRP contract averages 7%

    Genome analysis of Desulfotomaculum gibsoniae strain GrollT a highly versatile Gram-positive sulfate-reducing bacterium

    Get PDF
    Desulfotomaculum gibsoniae is a mesophilic member of the polyphyletic spore-forming genus Desulfotomaculum within the family Peptococcaceae. This bacterium was isolated from a freshwater ditch and is of interest because it can grow with a large variety of organic substrates, in particular several aromatic compounds, short-chain and medium-chain fatty acids, which are degraded completely to carbon dioxide coupled to the reduction of sulfate. It can grow autotrophically with H2 + CO2 and sulfate and slowly acetogenically with H2 + CO2, formate or methoxylated aromatic compounds in the absence of sulfate. For growth it does not require any vitamins. Here, we describe the features of D. gibsoniae strain GrollT together with the genome sequence and annotation. The chromosome has 4,855,529 bp organized in one circular contig and is the largest genome of all sequenced Desulfotomaculum spp., so far. A total of 4666 candidate protein-encoding genes and 96 RNA genes were identified. Genes of the acetyl-CoA pathway possibly involved in heterotrophic growth, and in CO2 fixation during autotrophic growth are present. The genome contains a large set of genes for the anaerobic transformation and degradation of aromatic compounds, which are lacking in the other sequenced Desulfotomaculum genomes

    A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum

    Get PDF
    A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse 1a. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community

    First record of Rhabdoceras suessi (Ammonoidea, Late Triassic) from the Transylvanian Triassic Series of the Eastern Carpathians (Romania) and a review of its biochronology, paleobiogeography and paleoecology

    Get PDF
    Abstract The occurrence of the heteromorphic ammonoid Rhabdoceras suessi Hauer, 1860, is recorded for the first time in the Upper Triassic limestone of the Timon-Ciungi olistolith in the Rarău Syncline, Eastern Carpathians. A single specimen of Rhabdoceras suessi co-occurs with Monotis (Monotis) salinaria that constrains its occurrence here to the Upper Norian (Sevatian 1). It is the only known heteromorphic ammonoid in the Upper Triassic of the Romanian Carpathians. Rhabdoceras suessi is a cosmopolitan species widely recorded in low and mid-paleolatitude faunas. It ranges from the Late Norian to the Rhaetian and is suitable for high-resolution worldwide correlations only when it co-occurs with shorter-ranging choristoceratids, monotid bivalves, or the hydrozoan Heterastridium. Formerly considered as the index fossil for the Upper Norian (Sevatian) Suessi Zone, by the latest 1970s this species lost its key biochronologic status among Late Triassic ammonoids, and it generated a controversy in the 1980s concerning the status of the Rhaetian stage. New stratigraphic data from North America and Europe in the subsequent decades resulted in a revised ammonoid biostratigraphy for the uppermost Triassic, the Rhaetian being reinstalled as the topmost stage in the current standard timescale of the Triassic. The geographic distribution of Rhabdoceras is compiled from published worldwide records, and its paleobiogeography and paleoecology are discussed
    corecore