267 research outputs found
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Loss of p19Arf Facilitates the Angiogenic Switch and Tumor Initiation in a Multi-Stage Cancer Model via p53-Dependent and Independent Mechanisms
The Arf tumor suppressor acts as a sensor of oncogenic signals, countering aberrant proliferation in large part via activation of the p53 transcriptional program, though a number of p53-independent functions have been described. Mounting evidence suggests that, in addition to promoting tumorigenesis via disruptions in the homeostatic balance between cell proliferation and apoptosis of overt cancer cells, genetic alterations leading to tumor suppressor loss of function or oncogene gain of function can also incite tumor development via effects on the tumor microenvironment. In a transgenic mouse model of multi-stage pancreatic neuroendocrine carcinogenesis (PNET) driven by inhibition of the canonical p53 and Rb tumor suppressors with SV40 large T-antigen (Tag), stochastic progression to tumors is limited in part by a requirement for initiation of an angiogenic switch. Despite inhibition of p53 by Tag in this mouse PNET model, concomitant disruption of Arf via genetic knockout resulted in a significantly accelerated pathway to tumor formation that was surprisingly not driven by alterations in tumor cell proliferation or apoptosis, but rather via earlier activation of the angiogenic switch. In the setting of a constitutional p53 gene knockout, loss of Arf also accelerated tumor development, albeit to a lesser degree. These findings demonstrate that Arf loss of function can promote tumorigenesis via facilitating angiogenesis, at least in part, through p53-independent mechanisms
The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates
<p/> <p>Background</p> <p>Stearoyl-CoA desaturases (SCDs) are key enzymes involved in <it>de novo </it>monounsaturated fatty acid synthesis. They catalyze the desaturation of saturated fatty acyl-CoA substrates at the delta-9 position, generating essential components of phospholipids, triglycerides, cholesterol esters and wax esters. Despite being crucial for interpreting SCDs roles across species, the evolutionary history of the SCD gene family in vertebrates has yet to be elucidated, in particular their isoform diversity, origin and function. This work aims to contribute to this fundamental effort.</p> <p>Results</p> <p>We show here, through comparative genomics and phylogenetics that the SCD gene family underwent an unexpectedly complex history of duplication and loss events. Paralogy analysis hints that SCD1 and SCD5 genes emerged as part of the whole genome duplications (2R) that occurred at the stem of the vertebrate lineage. The SCD1 gene family expanded in rodents with the parallel loss of SCD5 in the Muridae family. The SCD1 gene expansion is also observed in the Lagomorpha although without the SCD5 loss. In the amphibian <it>Xenopus tropicalis </it>we find a single SCD1 gene but not SCD5, though this could be due to genome incompleteness. In the analysed teleost species no SCD5 is found, while the surrounding SCD5-less locus is conserved in comparison to tetrapods. In addition, the teleost SCD1 gene repertoire expanded to two copies as a result of the teleost specific genome duplication (3R). Finally, we describe clear orthologues of SCD1 and SCD5 in the chondrichthian, <it>Scyliorhinus canicula</it>, a representative of the oldest extant jawed vertebrate clade. Expression analysis in <it>S. canicula </it>shows that whilst SCD1 is ubiquitous, SCD5 is mainly expressed in the brain, a pattern which might indicate an evolutionary conserved function.</p> <p>Conclusion</p> <p>We conclude that the SCD1 and SCD5 genes emerged as part of the 2R genome duplications. We propose that the evolutionary conserved gene expression between distinct lineages underpins the importance of SCD activity in the brain (and probably the pancreas), in a yet to be defined role. We argue that an expression independent of an external stimulus, such as diet induced activity, emerged as a novel function in vertebrate ancestry allocated to the SCD5 isoform in various tissues (e.g. brain and pancreas), and it was selectively maintained throughout vertebrate evolution.</p
HOOKWORM AND THREADWORM INFECTIONS AND THEIR ASSOCIATION WITH HEMOGLOBIN AND EOSINOPHIL CONCENTRATIONS IN RESIDENTS OF SALVADOR-BAHIA, BRAZIL
SUMMARY Parasitic infections are responsible for substantial mortality and morbidity worldwide. In most healthy individuals, little overt pathology is observed during infection with S. stercoralis. However, the symptoms in advanced cases may include gastrointestinal bleeding. Anemia is most commonly associated with hookworm infection, especially when several hundred worms are present. Our study evaluates the relationship between the hookworm or S. stercoralis infection status and the hemoglobin concentration of individuals examined by a private network of laboratories in Salvador, Bahia, Brazil. We examined 374,120 samples from middle-class individuals living in Salvador City from January 2004 to April 2008. The stool samples were analyzed by the Lutz and Baermann-Moraes methods, and the blood samples were analyzed for hemoglobin concentration and eosinophil counting. The prevalence of hookworm and S. stercoralis were 0.27% (1,027) and 0.34% (1,286), respectively. The prevalence of hookworm and S. stercoralis infection was significantly higher in males than in females and increased with age. Eosinophilia was a common laboratorial finding in individuals infected with hookworm and S. stercoralis. The hemoglobin concentration was lower in the hookworm-infected individuals than in non-infected ones, but none of the examined patients were anemic. Lack of anemia could be a consequence of the socioeconomic status of these patients
Bark anatomy, chemical composition and ethanol-water extract composition of Anadenanthera peregrina and Anadenanthera colubrina
The bark of Anadenanthera peregrina (L.) Speg and Anadenanthera colubrina (Vell.) Brenan
were characterized in relation to anatomical and chemical features. The barks were
similar and included a thin conducting phloem, a largely dilated and sclerified non-conducting
phloem, and a rhyridome with periderms with thin phellem interspersed by cortical tissues.
Only small differences between species were observed that cannot be used alone for
taxonomic purposes. The summative chemical composition of A. peregrina and A. colubrina
was respectively: 8.2% and 7.7% ash; 28.8% and 29.3% extractives; 2.4% and 2.6%
suberin; and 18.9% lignin. The monosaccharide composition showed the predominance of
glucose (on average 82% of total neutral sugars) and of xylose (9%). The ethanol-water
extracts of A. peregrina and A. colubrina barks included a high content of phenolics, respectively:
total phenolics 583 and 682 mg GAE/g extract; 148 and 445 mg CE/g extract; tannins
587 and 98 mg CE/g extract. The antioxidant activity was 238 and 269 mg Trolox/g extract.
The barks of the Anadenanthera species are a potential source of polar extractives that will
represent an important valorization and therefore contribute to improve the overall economic
potential and sustainability of A. peregrina and A. colubrinainfo:eu-repo/semantics/publishedVersio
- …