495 research outputs found
Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score)
SummaryObjectiveIn an effort to evolve semi-quantitative scoring methods based upon limitations identified in existing tools, integrating expert readers’ experience with all available scoring tools and the published data comparing the different scoring systems, we iteratively developed the magnetic resonance imaging (MRI) Osteoarthritis Knee Score (MOAKS). The purpose of this report is to describe the instrument and its reliability.MethodsThe MOAKS instrument refines the scoring of bone marrow lesions (BMLs) (providing regional delineation and scoring across regions), cartilage (sub-regional assessment), and refines the elements of meniscal morphology (adding meniscal hypertrophy, partial maceration and progressive partial maceration) scoring. After a training and calibration session two expert readers read MRIs of 20 knees separately. In addition, one reader re-read the same 20 MRIs 4 weeks later presented in random order to assess intra-rater reliability. The analyses presented here are for both intra- and inter-rater reliability (calculated using the linear weighted kappa and overall percent agreement).ResultsWith the exception of inter-rater reliability for tibial cartilage area (kappa=0.36) and tibial osteophytes (kappa=0.49); and intra-rater reliability for tibial BML number of lesions (kappa=0.54), Hoffa-synovitis (kappa=0.42) all measures of reliability using kappa statistics were very good (0.61–0.8) or reached near-perfect agreement (0.81–1.0). Only intra-rater reliability for Hoffa-synovitis, and inter-rater reliability for tibial and patellar osteophytes showed overall percent agreement <75%.ConclusionMOAKS scoring shows very good to excellent reliability for the large majority of features assessed. Further iterative development and research will include assessment of its validation and responsiveness
Cross-sectional DXA and MR measures of tibial periarticular bone associate with radiographic knee osteoarthritis severity
SummaryObjectiveWe evaluated the relationship of medial proximal tibial periarticular areal bone mineral density (paBMD) and trabecular morphometry and determined whether these bone measures differed across radiographic medial joint space narrowing (JSN) scores.Methods482 participants of the Osteoarthritis Initiative (OAI) Bone Ancillary Study had knee dual X-ray absorptiometry (DXA) and trabecular bone 3T magnetic resonance imaging (MRI) exams assessed at the same visit. Medial proximal tibial paBMD was measured on DXA and apparent trabecular bone volume fraction (aBV/TV), thickness (aTb.Th), number (aTb.N), and spacing (aTb.Sp) were determined from MR images. Radiographs were assessed for medial JSN scores (0–3). We evaluated associations between medial paBMD and trabecular morphometry. Whisker plots with notches of these measures versus medial JSN scores were generated and presented.ResultsMean age was 63.9 (9.2) years, BMI 29.6 (4.8) kg/m2, and 53% were male. The Spearman correlation coefficients between DXA-measured medial paBMD and aBV/TV was 0.61 [95% confidence interval (CI) 0.55–0.66]; between paBMD and aTb.Th was 0.38 (95%CI 0.30–0.46); paBMD and aTb.N was 0.65 (95%CI 0.60–0.70); paBMD and aTb.Sp was −0.65 (95%CI −0.70 to −0.59). paBMD and the trabecular metrics were associated with medial JSN scores.ConclusionThe moderate associations between periarticular trabecular bone density and morphometry and their relationship with greater severity of knee OA support hypotheses of remodeling and/or microscopic compression fractures in the natural history of OA. Longitudinal studies are needed to assess whether knee DXA will be a predictor of OA progression. Further characterization of the periarticular bone in OA utilizing complementary imaging modalities will help clarify OA pathophysiology
Analysis of a genomic segment of white spot syndrome virus of shrimp containing ribonucleotide reductase genes and repeat regions
White spot syndrome is a worldwide disease of penaeid shrimp. The disease agent is a bacilliform, enveloped virus, white spot syndrome virus (WSSV), with a double-stranded DNA genome that probably contains well over 200 kb. Analysis of a 12?3 kb segment of WSSV DNA revealed eight open reading frames (ORFs), including the genes for the large (RR1) and small (RR2) subunits of ribonucleotide reductase. The rr1 and rr2 genes were separated by 5760 bp, containing several putative ORFs and two domains with multiple sequence repeats. The first domain contained six direct repeats of 54 bp and is part of a coding region. The second domain had one partial and two complete direct repeats of 253 bp at an intergenic location. This repeat, located immediately upstream of rr1, has homologues at several other locations on the WSSV genome. Phylogenetic analysis of RR1 and RR2 indicated that WSSV belongs to the eukaryotic branch of an unrooted parsimonious tree and, further, seems to suggest that WSSV and baculoviruses probably do not share an immediate common ancestor. The present analysis of WSSV favours the view that this virus is either a member of a new genus (Whispovirus) within the Baculoviridae or a member of an entirely new virus family
Fully Dynamic Numerical Simulation of the Hammer Peening Fatigue Life Improvement Technique
AbstractThis paper presents the results of the development process for a Finite Element Analysis of the Hammer Peening Fatigue Life Improvement Technique. The Fatigue Life of welded structures is still in need for improvement. The sheer number of Fatigue Live Improvement Techniques parameters leads to the need of simulating and predicting their results. For this study, two different materials were used, an Austenitic Stainless Steel and a Duplex Stainless Steel. Non-load carrying cruciform weld joints were produced and fatigue tested, with and without the Hammer Peening treatment. Finally a FEA code (ABAQUS®) was used to simulate the Hammer Peening technique. A fully dynamic model was used, combined with the Chaboche Kinematic-hardening material model and different Hammering parameter experimentally determined. Alongside the residual stresses introduced by the Hammer Peening Technique, the predicted Fatigue Life using the FEA model were compared with the experimental results, showing a very good agreement between them. Also the effect of several parameters, like the hammering impact load, the hammer positioning or the number of hammering passages, were analysed as a way to validate the FEA model. The most important result was of course the Fatigue Strength Gain factor, for the Hammer Peening Technique, that in both cases was found to be superior to 1.3
Star Formation and Dynamics in the Galactic Centre
The centre of our Galaxy is one of the most studied and yet enigmatic places
in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre
(GC) is the ideal environment to study the extreme processes that take place in
the vicinity of a supermassive black hole (SMBH). Despite the hostile
environment, several tens of early-type stars populate the central parsec of
our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and
inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the
SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The
formation of such early-type stars has been a puzzle for a long time: molecular
clouds should be tidally disrupted by the SMBH before they can fragment into
stars. We review the main scenarios proposed to explain the formation and the
dynamical evolution of the early-type stars in the GC. In particular, we
discuss the most popular in situ scenarios (accretion disc fragmentation and
molecular cloud disruption) and migration scenarios (star cluster inspiral and
Hills mechanism). We focus on the most pressing challenges that must be faced
to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in
expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A.,
'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …