191 research outputs found

    Research with marginalised communities: reflections onengaging Roma Women in Northern England

    Get PDF
    This paper critically explores research with marginalised communities.We provide an insight into our work with the Roma community, reflectingon innovation, opportunities and barriers, alongside the need for morework in this area. A particular focus here surrounds novel methodologiesfor exploring the health and wellbeing of such groups and ways of coproducing research. The paper also raises awareness around arts-basedsocial prescribing with marginalised communities and the need toupscale work in this regard. Through doing so, we hope to influencepractice, raise awareness around work with the Roma community andenable more creativity within the broader field

    Correction to: GloPL,a Global Data Base on Pollen Limitation of Plant Reproduction (Scientific Data, (2018), 5, (180249), 10.1038/sdata.2018.249)

    Get PDF
    J. H. Burns was omitted in error from the author list of the original version of this Data Descriptor. This omission has now been corrected in both the HTML and PDF versions

    Ecological speciation in European whitefish is driven by a large-gaped predator

    Get PDF
    Lake-dwelling fish that form species pairs/flocks characterized by body size divergence are important model systems for speciation research. Although several sources of divergent selection have been identified in these systems, their importance for driving the speciation process remains elusive. A major problem is that in retrospect, we cannot distinguish selection pressures that initiated divergence from those acting later in the process. To address this issue, we studied the initial stages of speciation in European whitefish (Coregonus lavaretus) using data from 358 populations of varying age (26-10,000 years). We find that whitefish speciation is driven by a large-growing predator, the northern pike (Esox lucius). Pike initiates divergence by causing a largely plastic differentiation into benthic giants and pelagic dwarfs: ecotypes that will subsequently develop partial reproductive isolation and heritable differences in gill raker number. Using an eco-evolutionary model, we demonstrate how pike's habitat specificity and large gape size are critical for imposing a between-habitat trade-off, causing prey to mature in a safer place or at a safer size. Thereby, we propose a novel mechanism for how predators may cause dwarf/giant speciation in lake-dwelling fish species.Peer reviewe

    Land Use and Pollinator Dependency Drives Global Patterns of Pollen Limitation in the Anthropocene

    Get PDF
    Land use change, by disrupting the co-evolved interactions between plants and their pollinators, could be causing plant reproduction to be limited by pollen supply. Using a phylogenetically controlled meta-analysis on over 2200 experimental studies and more than 1200 wild plants, we ask if land use intensification is causing plant reproduction to be pollen limited at global scales. Here we report that plants reliant on pollinators in urban settings are more pollen limited than similarly pollinator-reliant plants in other landscapes. Plants functionally specialized on bee pollinators are more pollen limited in natural than managed vegetation, but the reverse is true for plants pollinated exclusively by a non-bee functional group or those pollinated by multiple functional groups. Plants ecologically specialized on a single pollinator taxon were extremely pollen limited across land use types. These results suggest that while urbanization intensifies pollen limitation, ecologically and functionally specialized plants are at risk of pollen limitation across land use categories

    Macroevolution of the plant–hummingbird pollination system

    Get PDF
    ABSTRACTPlant–hummingbird interactions are considered a classic example of coevolution, a process in which mutually dependent species influence each other's evolution. Plants depend on hummingbirds for pollination, whereas hummingbirds rely on nectar for food. As a step towards understanding coevolution, this review focuses on the macroevolutionary consequences of plant–hummingbird interactions, a relatively underexplored area in the current literature. We synthesize prior studies, illustrating the origins and dynamics of hummingbird pollination across different angiosperm clades previously pollinated by insects (mostly bees), bats, and passerine birds. In some cases, the crown age of hummingbirds pre‐dates the plants they pollinate. In other cases, plant groups transitioned to hummingbird pollination early in the establishment of this bird group in the Americas, with the build‐up of both diversities coinciding temporally, and hence suggesting co‐diversification. Determining what triggers shifts to and away from hummingbird pollination remains a major open challenge. The impact of hummingbirds on plant diversification is complex, with many tropical plant lineages experiencing increased diversification after acquiring flowers that attract hummingbirds, and others experiencing no change or even a decrease in diversification rates. This mixed evidence suggests that other extrinsic or intrinsic factors, such as local climate and isolation, are important covariables driving the diversification of plants adapted to hummingbird pollination. To guide future studies, we discuss the mechanisms and contexts under which hummingbirds, as a clade and as individual species (e.g. traits, foraging behaviour, degree of specialization), could influence plant evolution. We conclude by commenting on how macroevolutionary signals of the mutualism could relate to coevolution, highlighting the unbalanced focus on the plant side of the interaction, and advocating for the use of species‐level interaction data in macroevolutionary studies

    Glopl, a global data base on pollen limitation of plant reproduction

    Get PDF
    Plant reproduction relies on transfer of pollen from anthers to stigmas, and the majority of flowering plants depend on biotic or abiotic agents for this transfer. A key metric for characterizing if pollen receipt is insufficient for reproduction is pollen limitation, which is assessed by pollen supplementation experiments. In a pollen supplementation experiment, fruit or seed production by flowers exposed to natural pollination is compared to that following hand pollination either by pollen supplementation (i.e. manual outcross pollen addition without bagging) or manual outcrossing of bagged flowers, which excludes natural pollination. The GloPL database brings together data from 2969 unique pollen supplementation experiments reported in 927 publications published from 1981 to 2015, allowing assessment of the strength and variability of pollen limitation in 1265 wild plant species across all biomes and geographic regions globally. The GloPL database will be updated and curated with the aim of enabling the continued study of pollen limitation in natural ecosystems and highlighting significant gaps in our understanding of pollen limitation.<p>Correction in: Scientific Data, vol. 6, article number: 2. DOI: 10.1038/s41597-018-0006-1</p

    A Comparison of the Effects of Random and Selective Mass Extinctions on Erosion of Evolutionary History in Communities of Digital Organisms

    Get PDF
    The effect of mass extinctions on phylogenetic diversity and branching history of clades remains poorly understood in paleobiology. We examined the phylogenies of communities of digital organisms undergoing open-ended evolution as we subjected them to instantaneous “pulse” extinctions, choosing survivors at random, and to prolonged “press” extinctions involving a period of low resource availability. We measured age of the phylogenetic root and tree stemminess, and evaluated how branching history of the phylogenetic trees was affected by the extinction treatments. We found that strong random (pulse) and strong selective extinction (press) both left clear long-term signatures in root age distribution and tree stemminess, and eroded deep branching history to a greater degree than did weak extinction and control treatments. The widely-used Pybus-Harvey gamma statistic showed a clear short-term response to extinction and recovery, but differences between treatments diminished over time and did not show a long-term signature. The characteristics of post-extinction phylogenies were often affected as much by the recovery interval as by the extinction episode itself

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Why Are Some Plant Genera More Invasive Than Others?

    Get PDF
    Determining how biological traits are related to the ability of groups of organisms to become economically damaging when established outside of their native ranges is a major goal of population biology, and important in the management of invasive species. Little is known about why some taxonomic groups are more likely to become pests than others among plants. We investigated traits that discriminate vascular plant genera, a level of taxonomic generality at which risk assessment and screening could be more effectively performed, according to the proportion of naturalized species which are pests. We focused on the United States and Canada, and, because our purpose is ultimately regulatory, considered species classified as weeds or noxious. Using contingency tables, we identified 11 genera of vascular plants that are disproportionately represented by invasive species. Results from boosted regression tree analyses show that these categories reflect biological differences. In summary, approximately 25% of variation in genus proportions of weeds or noxious species was explained by biological covariates. Key explanatory traits included genus means for wetland habitat affinity, chromosome number, and seed mass

    The AEgIS experiment at CERN: Measuring antihydrogen free-fall in earth's gravitational field to test WEP with antimatter

    Get PDF
    The AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is designed with the objective to test the weak equivalence principle with antimatter by studying the free fall of antihydrogen in the Earth's gravitational field. A pulsed cold beam of antihydrogen will be produced by charge exchange between cold Ps excited in Rydberg state and cold antiprotons. Finally the free fall will be measured by a classical moir\ue9 deflectometer. The apparatus being assembled at the Antiproton Decelerator at CERN will be described, then the advancements of the experiment will be reported: positrons and antiprotons trapping measurements, Ps two-step excitation and a test-measurement of antiprotons deflection with a small scale moir\ue9 deflectometer
    corecore