85 research outputs found

    The systematic guideline review: method, rationale, and test on chronic heart failure

    Get PDF
    Background: Evidence-based guidelines have the potential to improve healthcare. However, their de-novo-development requires substantial resources-especially for complex conditions, and adaptation may be biased by contextually influenced recommendations in source guidelines. In this paper we describe a new approach to guideline development-the systematic guideline review method (SGR), and its application in the development of an evidence-based guideline for family physicians on chronic heart failure (CHF). Methods: A systematic search for guidelines was carried out. Evidence-based guidelines on CHF management in adults in ambulatory care published in English or German between the years 2000 and 2004 were included. Guidelines on acute or right heart failure were excluded. Eligibility was assessed by two reviewers, methodological quality of selected guidelines was appraised using the AGREE instrument, and a framework of relevant clinical questions for diagnostics and treatment was derived. Data were extracted into evidence tables, systematically compared by means of a consistency analysis and synthesized in a preliminary draft. Most relevant primary sources were re-assessed to verify the cited evidence. Evidence and recommendations were summarized in a draft guideline. Results: Of 16 included guidelines five were of good quality. A total of 35 recommendations were systematically compared: 25/35 were consistent, 9/35 inconsistent, and 1/35 un-rateable (derived from a single guideline). Of the 25 consistencies, 14 were based on consensus, seven on evidence and four differed in grading. Major inconsistencies were found in 3/9 of the inconsistent recommendations. We re-evaluated the evidence for 17 recommendations (evidence-based, differing evidence levels and minor inconsistencies) - the majority was congruent. Incongruity was found where the stated evidence could not be verified in the cited primary sources, or where the evaluation in the source guidelines focused on treatment benefits and underestimated the risks. The draft guideline was completed in 8.5 man-months. The main limitation to this study was the lack of a second reviewer. Conclusion: The systematic guideline review including framework development, consistency analysis and validation is an effective, valid, and resource saving-approach to the development of evidence-based guidelines

    Myasthenia gravis

    Get PDF
    Myasthenia gravis (MG) is a rare, autoimmune neuromuscular junction disorder. Contemporary prevalence rates approach 1/5,000. MG presents with painless, fluctuating, fatigable weakness involving specific muscle groups. Ocular weakness with asymmetric ptosis and binocular diplopia is the most typical initial presentation, while early or isolated oropharyngeal or limb weakness is less common. The course is variable, and most patients with initial ocular weakness develop bulbar or limb weakness within three years of initial symptom onset. MG results from antibody-mediated, T cell-dependent immunologic attack on the endplate region of the postsynaptic membrane. In patients with fatigable muscle weakness, the diagnosis of MG is supported by: 1. pharmacologic testing with edrophonium chloride that elicits unequivocal improvement in strength; 2. electrophysiologic testing with repetitive nerve stimulation (RNS) studies and/or single-fiber electromyography (SFEMG) that demonstrates a primary postsynaptic neuromuscular junctional disorder; and 3. serologic demonstration of acetylcholine receptor (AChR) or muscle-specific tyrosine kinase (MuSK) antibodies. Differential diagnosis includes congenital myasthenic syndromes, Lambert Eaton syndrome, botulism, organophosphate intoxication, mitochondrial disorders involving progressive external ophthalmoplegia, acute inflammatory demyelinating polyradiculoneuropathy (AIDP), motor neuron disease, and brainstem ischemia. Treatment must be individualized, and may include symptomatic treatment with cholinesterase inhibitors and immune modulation with corticosteroids, azathioprine, cyclosporine, and mycophenolate mofetil. Rapid, temporary improvement may be achieved for myasthenic crises and exacerbations with plasma exchange (PEX) or intravenous immunoglobulin (IVIg). Owing to improved diagnostic testing, immunotherapy, and intensive care, the contemporary prognosis is favorable with less than five percent mortality and nearly normal life expectancy

    MicroRNA Involvement in Immune Activation During Heart Failure

    Get PDF
    Heart failure is one of the common end stages of cardiovascular diseases, the leading cause of death in developed countries. Molecular mechanisms underlying the development of heart failure remain elusive but there is a consistent observation of chronic immune activation and aberrant microRNA (miRNA) expression that is present in failing hearts. This review will focus on the interplay between the immune system and miRNAs as factors that play a role during the development of heart failure. Several studies have shown that heart failure patients can be characterized by a sustained innate immune activation. The role of inflammatory signaling is discussed and TLR4 signaling, IL-1ÎČ, TNFα and IL-6 expression appears to coincide with the development of heart failure. Furthermore, we describe the implication of the renin angiotensin aldosteron system in immunity and heart failure. In the past decade microRNAs (miRNAs), small non-coding RNAs that translationally repress protein synthesis by binding to partially complementary sequences of mRNA, have come to light as important regulators of several kinds of cardiovascular diseases including cardiac hypertrophy and heart failure. The involvement of differentially expressed miRNAs in the inflammation that occurs during the development of heart failure is still subject of investigation. Here, we summarize and comment on the first studies in this field and hypothesize on the putative involvement of certain miRNAs in heart failure. MicroRNAs have been shown to be critical regulators of cardiac function and inflammation. Future research will have to point out if dampening the immune response, and the miRNAs associated with it, during the development of heart failure is a therapeutically plausible route to follow

    Patellofemoral pain syndrome (PFPS): a systematic review of anatomy and potential risk factors

    Get PDF
    Patellofemoral Pain Syndrome (PFPS), a common cause of anterior knee pain, is successfully treated in over 2/3 of patients through rehabilitation protocols designed to reduce pain and return function to the individual. Applying preventive medicine strategies, the majority of cases of PFPS may be avoided if a pre-diagnosis can be made by clinician or certified athletic trainer testing the current researched potential risk factors during a Preparticipation Screening Evaluation (PPSE). We provide a detailed and comprehensive review of the soft tissue, arterial system, and innervation to the patellofemoral joint in order to supply the clinician with the knowledge required to assess the anatomy and make recommendations to patients identified as potentially at risk. The purpose of this article is to review knee anatomy and the literature regarding potential risk factors associated with patellofemoral pain syndrome and prehabilitation strategies. A comprehensive review of knee anatomy will present the relationships of arterial collateralization, innervations, and soft tissue alignment to the possible multifactoral mechanism involved in PFPS, while attempting to advocate future use of different treatments aimed at non-soft tissue causes of PFPS

    Health enhancing strength training in nonagenarians (STRONG): rationale, design and methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Health Enhancing Strength Training in Nonagenarians (STRONG) is a randomised control trial to assess the effectiveness of an aerobic and strength training program for improving muscle strength, functional capacity and quality of life in nonagenarians.</p> <p>Methods</p> <p>Sixty (51 women) nonagenarians (age range: 90–102 years) who live in a geriatric nursing home will be randomly assigned to either a usual care (control) group (n = 30) or an intervention (training) group (n = 30). Participants allocated in the usual care group will receive general physical activity guidelines and participants allocated in the intervention group will also enrol in three weekly non-consecutive individualized training sessions (~45–50 min each) during 8 weeks. The exercise program will consist of muscular strength [with a special focus on leg press at 30% (start of the program) to 70% 1 repetition maximum (end)] and aerobic exercises (cycle-ergometry during 3–5 to 15 minutes at 12–14 points in the rate of perceived exertion scale).</p> <p>Results</p> <p>Results from STRONG will help to better understand the potential of regular physical activity for improving the well-being of the oldest population groups.</p> <p>Conclusion</p> <p>The increase in life expectancy together with the dramatic decrease in birth rates in industrialized countries calls the attention to health care systems and public health policymakers to focus attention on promoting healthy lifestyle in the highest sector of the population pyramid. Our study attempts to improve functional capacity and QOL of nonagenarians by implementing an individualised aerobic and strength training program in a geriatric residential care. Results from STRONG will help to better understand the potential of regular physical activity for improving the well being even in persons aged 90 years or over.</p> <p>Trail Registration</p> <p>ClinicalTrials.gov ID: NCT00848978</p

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    • 

    corecore