22 research outputs found

    The ZZ' kinetic mixing in the light of the recent direct and indirect dark matter searches

    Full text link
    Several constructions, of stringy origins or not, generate abelian gauge extensions of the Standard Model (SM). Even if the particles of the SM are not charged under this extra U(1)U'(1), one cannot avoid the presence of a kinetic mixing between U(1)U'(1) and the hypercharge UY(1)U_Y(1). In this work, we constraint drastically this kinetic mixing, taking into account the recent experimental data from accelerator physics, direct detection and indirect detection of dark matter. We show that the region respecting WMAP and experimental constraints is now very narrowed along the pole line where MZD2mDMM_{Z_D}\simeq 2 m_{DM}, ZDZ_D being the gauge boson associated to the extra U(1)U'(1).Comment: 9 pages, 3 figures, final version to appear in JCA

    Decaying Dark Matter in the Supersymmetric Standard Model with Freeze-in and Seesaw mechanims

    Get PDF
    Inspired by the decaying dark matter (DM) which can explain cosmic ray anomalies naturally, we consider the supersymmetric Standard Model with three right-handed neutrinos (RHNs) and R-parity, and introduce a TeV-scale DM sector with two fields \phi_{1,2} and a Z3Z_3 discrete symmetry. The DM sector only interacts with the RHNs via a very heavy field exchange and then we can explain the cosmic ray anomalies. With the second right-handed neutrino N_2 dominant seesaw mechanism at the low scale around 10^4 GeV, we show that \phi_{1,2} can obtain the vacuum expectation values around the TeV scale, and then the lightest state from \phi_{1,2} is the decay DM with lifetime around \sim 10^{26}s. In particular, the DM very long lifetime is related to the tiny neutrino masses, and the dominant DM decay channels to \mu and \tau are related to the approximate \mu-\tau symmetry. Furthermore, the correct DM relic density can be obtained via the freeze-in mechanism, the small-scale problem for power spectrum can be solved due to the decays of the R-parity odd meta-stable states in the DM sector, and the baryon asymmetry can be generated via the soft leptogensis.Comment: 24 pages,3 figure

    Charge Asymmetric Cosmic Rays as a probe of Flavor Violating Asymmetric Dark Matter

    Get PDF
    The recently introduced cosmic sum rules combine the data from PAMELA and Fermi-LAT cosmic ray experiments in a way that permits to neatly investigate whether the experimentally observed lepton excesses violate charge symmetry. One can in a simple way determine universal properties of the unknown component of the cosmic rays. Here we attribute a potential charge asymmetry to the dark sector. In particular we provide models of asymmetric dark matter able to produce charge asymmetric cosmic rays. We consider spin zero, spin one and spin one-half decaying dark matter candidates. We show that lepton flavor violation and asymmetric dark matter are both required to have a charge asymmetry in the cosmic ray lepton excesses. Therefore, an experimental evidence of charge asymmetry in the cosmic ray lepton excesses implies that dark matter is asymmetric.Comment: 12 pages, 8 figures. Revised version to match the published versio

    Constraining Very Heavy Dark Matter Using Diffuse Backgrounds of Neutrinos and Cascaded Gamma Rays

    Full text link
    We consider multi-messenger constraints on very heavy dark matter (VHDM) from recent Fermi gamma-ray and IceCube neutrino observations of isotropic background radiation. Fermi data on the diffuse gamma-ray background (DGB) shows a possible unexplained feature at very high energies (VHE), which we have called the "VHE Excess" relative to expectations for an attenuated power law extrapolated from lower energies. We show that VHDM could explain this excess, and that neutrino observations will be an important tool for testing this scenario. More conservatively, we derive new constraints on the properties of VHDM for masses of 10^3-10^10 GeV. These generic bounds follow from cosmic energy budget constraints for gamma rays and neutrinos that we developed elsewhere, based on detailed calculations of cosmic electromagnetic cascades and also neutrino detection rates. We show that combining both gamma-ray and neutrino data is essential for making the constraints on VHDM properties both strong and robust. In the lower mass range, our constraints on VHDM annihilation and decay are comparable to other results; however, our constraints continue to much higher masses, where they become relatively stronger.Comment: 33 pages, 21 figures, accepted for publication in JCA

    PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection

    Full text link
    We provide ingredients and recipes for computing signals of TeV-scale Dark Matter annihilations and decays in the Galaxy and beyond. For each DM channel, we present the energy spectra of electrons and positrons, antiprotons, antideuterons, gamma rays, neutrinos and antineutrinos e, mu, tau at production, computed by high-statistics simulations. We estimate the Monte Carlo uncertainty by comparing the results yielded by the Pythia and Herwig event generators. We then provide the propagation functions for charged particles in the Galaxy, for several DM distribution profiles and sets of propagation parameters. Propagation of electrons and positrons is performed with an improved semi-analytic method that takes into account position-dependent energy losses in the Milky Way. Using such propagation functions, we compute the energy spectra of electrons and positrons, antiprotons and antideuterons at the location of the Earth. We then present the gamma ray fluxes, both from prompt emission and from Inverse Compton scattering in the galactic halo. Finally, we provide the spectra of extragalactic gamma rays. All results are available in numerical form and ready to be consumed.Comment: 57 pages with many figures and tables. v4: updated to include a 125 higgs boson, computation and discussion of extragalactic spectra corrected, some other typos fixed; all these corrections and updates are reflected on the numerical ingredients available at http://www.marcocirelli.net/PPPC4DMID.html they correspond to Release 2.

    Decaying Dark Matter in Supersymmetric Model and Cosmic-Ray Observations

    Full text link
    We study cosmic-rays in decaying dark matter scenario, assuming that the dark matter is the lightest superparticle and it decays through a R-parity violating operator. We calculate the fluxes of cosmic-rays from the decay of the dark matter and those from the standard astrophysical phenomena in the same propagation model using the GALPROP package. We reevaluate the preferred parameters characterizing standard astrophysical cosmic-ray sources with taking account of the effects of dark matter decay. We show that, if energetic leptons are produced by the decay of the dark matter, the fluxes of cosmic-ray positron and electron can be in good agreements with both PAMELA and Fermi-LAT data in wide parameter region. It is also discussed that, in the case where sizable number of hadrons are also produced by the decay of the dark matter, the mass of the dark matter is constrained to be less than 200-300 GeV in order to avoid the overproduction of anti-proton. We also show that the cosmic gamma-ray flux can be consistent with the results of Fermi-LAT observation if the mass of the dark matter is smaller than nearly 4 TeV.Comment: 24 pages, 5 figure

    Planck 2015 results. XIII. Cosmological parameters

    Get PDF
    We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets
    corecore