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Abstract

Inspired by the decaying dark matter (DM) which can explain cosmic ray anomalies naturally,

we consider the supersymmetric Standard Model with three right-handed neutrinos (RHNs) and

R-parity, and introduce a TeV-scale DM sector with two fields φ1,2 and a Z3 discrete symmetry.

The DM sector only interacts with the RHNs via a very heavy field exchange and then we can

explain the cosmic ray anomalies. With the second right-handed neutrino N2 dominant seesaw

mechanism at the low scale around 104 GeV, we show that φ1,2 can obtain the vacuum expectation

values around the TeV scale, and then the lightest state from φ1,2 is the decay DM with lifetime

around ∼ 1026s. In particular, the DM very long lifetime is related to the tiny neutrino masses,

and the dominant DM decay channels to µ and τ are related to the approximate µ− τ symmetry.

Furthermore, the correct DM relic density can be obtained via the freeze-in mechanism, the small-

scale problem for power spectrum can be solved due to the decays of the R-parity odd meta-stable

states in the DM sector, and the baryon asymmetry can be generated via the soft leptogensis.

PACS numbers: 12.60.Jv, 14.70.Pw, 95.35.+d
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I. INTRODUCTION AND MOTIVATION

The cosmic ray anomalies observed by PAMELA and Fermi-LAT [1, 2] strongly indicated

that the dark matter (DM) particles annihilate or decay dominantly into the leptons. Al-

though the large annihilation cross sections can be realized via the Sommerfield enhancement

or Breit-Wigner mechanism [3], the HESS obervation [4, 5] of the Galactic center gamma

rays gives strong constraints on the annihilation DM scenario [6]. The decaying DM [7–9]

with a lifetime at the order O(1026)s is another elegant way to explain the cosmic ray anoma-

lies. In particular, the contraints from the Galactic center gamma rays are much weaker [6].

However, the ultimate long lifetime of decaying DM becomes a non-trivial problem since the

symmetry, which makes the DM stable, must be broken tinily.

Supersymmetry naturally solve the gauge hiearchy problem in the Standard Model (SM).

Gauge coupling unification in the Minimal Supersymmetric Standard Model (MSSM) implies

the Grand Unified Theories (GUTs) at the GUT scale MGUT around 2 × 1016 GeV. Thus,

the DM decays via the dimension-six operators suppressed by the GUT scale is a rather

simple solution to the long lifetime of decaying DM, and it may provide a way to probe

the GUT scale physics [8]. Another problem in the decaying DM is how to understand the

DM dominant leptonic decays, especially to the µ and τ final states. Without automatically

kinematical suppressions like the annihilation models [3], one has to employ some special

symmetry so that the DM interacts strongly with the second or third families of the charged

leptons, for instance, flavor Froggat-Nielson symmetry [10].

Because of the DM leptonic decays, one may conjecture that the DM sector only interacts

with the lepton sector [11]. Note that the neutrino masses are very tiny, we can parametrize

the small couplings for the DM decay as the ratio between the light neutrino massmν ∼ 10−11

GeV and the GUT scale

λ ∼ mν

MGUT
∼ 10−27 . (1)

Interestingly, this is the typical order of tiny coupling parameter rendering the lifetime

around 1026s for a TeV-scale DM. Thus, it also implies the deep connection between the

decaying DM with long lifetime and the active neutrinos with tiny masses.

In this paper, we consider the supersymmetric Standard Models with R-parity (Rp) and

three right-handed neutrinos (RHNs) Ni where the neutrino masses are generated via the

low-scale seesaw mechanism. In the DM sector, we introduce the SM singlet DM fields φ1,2

and a discrete Z3 symmetry under which the term φ1φ2 is invariant. At the leading order

they couple to leptonic sector through a dimension-seven operator

1

Λ
× 1

MNl

× φ1φ2

( C′
ij

MNl

(LiHu)(LjHu)

)
, (2)
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where coefficient C′
ij come from neutrino Dirac Yukawa couplings, constrained by light neu-

trino masses in seesaw mechanism. It can be obtained after integrating out the heavy

right-handed neutrinos (RHNs) and a superheavy field X with mass Λ, provided that φi

only interacts with the RHNs mediated by X . Note that there is a GUT scale in GUTs, we

shall assume Λ ∼ MGUT . Interestingly, this is the exact scale that we need to produce the

correct DM density via the freeze-in mechanism. In our models, the vacuum expectation

values (VEVs) for φ1,2 are close to the RHN masses. Thus, Eq. (2) gives the small parameter

λ approximately if we identify the terms in the bracket as mν . Furthermore, the preferred

µ and τ decay channels can be related to the neutrino tri-bimaximal mixing (TBM) sce-

nario with the second right-handed neutrino N2 dominant seesaw mechanism [12]. In short,

cosmic ray anomalies, if confirmed further, potentially have deep correlation with neutrino

physics, especially such seesaw mechanism.

The DM relic density generally conflicts with standard thermal freeze-out scenario in the

decaying DM models if the scalar components of the DM fields acquire VEVs. It is not diffi-

cult to understand it from the effective operators φ1φ2L
2 (L are the operators for particles in

the MSSM) which can generate large annihilating rate. However, they also catastrophically

make φi decay very fast. So one usually considered the non-thermal DM production, for

example, a detail study given in Ref. [13]. Unlike the weakly interacting massive particle

(WIMP) scenario, the non-thermal production usually loses the natural predication on DM

abundance. Recently, it was proposed that the feebly interacting massive particle (FIMP)

may be an alternative to WIMP [14], shedding light on decaying DM. Typically, the FIMP

involving a coupling at the strength O(10−13) ∼ TeV/MGUT for the decay dominated freeze-

in mechanism, or a larger one ∼ O(10−11) for scattering dominated freeze-in mechanism.

Amazingly, in our model, φ1,2 must couple to the RHNs by the dimension-five operators

suppressed by MX somewhat smaller than MGUT and by MNi
∼ 104 GeV, based on proper

decaying lifetime of DM. Similar results hold for the scattering process dominated freeze-in

mechanism. Therefore, in our decaying DM model, its relic density again is a “miracle” via

the freeze-in mechanism.

As a by product in supersymmetric SMs with freeze-in mechanism, we are able to solve

the small scale problem for power spectrum, in the presence of a metastable Rp−odd state φ̃

in the DM sector. The point is the following: the whole supermultiplets φ1,2 are freezed into

the thermal bath. We assume that mφR
+mφ̃ ′ > mφ̃, where φR is the lightest state and the

DM particle while φ̃ ′ is the lighter Rp−odd state and has a mass close to the DM particle

φR. By virtue of Z3 × Rp, the leading decay mode of φ̃ is to the lightest supersymmetric

particle (LSP) plus φR. Provided that mφ̃ and the LSP are respectively sufficient heavy

and light, the relativistic LSP is produced from φ̃ late decay at some sufficient late time

τI ∼ 10s− 1000s. This warm DM component is just the key to reduce power spectrum on
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small scale [15].

In addition, we can still explain the baryon asymmetry via soft leptogenesis [16] since

the seesaw scale is low around 104 GeV. In supersymmetric seesaw framework, when the

new CP-violating sources in the soft terms dominate the sneutrino(s) Ñ CP-violating decay,

the so-called soft leptogensis [17, 18] is indeed able to produce enough lepton numbers in

our model. Before the discovery of gaugino effect [32], soft leptogensis suffers the highly

suppressed bilinear soft mass term BNi
MNi

ÑiÑi with BNi
. 10−3MSUSY where MSUSY is

the universal supersymmetry breaking scale. In this paper, we assume that the trilinear soft

terms AY NijÑiL̃jHu are the only sources of CP-violation in the supersymmetry breaking

soft terms. Interestingly, enough baryon number density can be generated naturally. Even

the baryon number density tends to be overproduced if MN2
is too light ∼ O (TeV), we can

choose a relatively smaller universal A term or tune its CP violation phase to obtain the

observed baryon asymmetry.

This paper is organized as follows. In Section II, we present the model, and discuss the

decay of DM, its relic density, as well as the relation between neutrino physics and cosmic

ray anomalies. In Section III, we study the phenomenological consequences of our model,

such as the solution to the small scale structure problem, and the low-scale soft leptogensis.

In the Appendix A, we briefly review the freeze-in mechanism.

II. THE SUPERSYMMETRIC DECAYING DARK MATTER MODEL WITH N2

DOMINANT SEESAW MECHANISM

A. The Decaying Dark Matter Model

We consider the supersymmetric SM with three RHNs and R-parity, and introduce a DM

sector. As we know, a well defined DM sector should not only have a DM particle at the TeV

scale, but also spontaneously breaks the discrete symmetry that stabilize the DM particle.

The simplest dark sector contains a SM singlet φ and a Z2 discrete symmetry under which

only φ is odd. To have a decaying DM, we break the Z2 symmetry by giving a VEV to

φ, i .e., 〈φ〉 6= 0. Thus, at the leading order, φ couples to the observable sector through

dimension-five operators φ2N2
i /Λ, which can be obtained from a renormalizable theory after

integrating out a heavy field with mass Λ. This decaying DM can explain the cosmic ray

anomalies and satisfy the other phenomenological requirements that we shall consider. For

an example, see Ref. [19]. However, in such an simple model it is very difficult to break

Z2 symmetry naturally. Concretely speaking, we may have to introduce another SM singlet

field S ′ that couples to φ via a superpotential term S ′φ2. This superpotential term provides

the quartic term to the scalar potential of φ, and then we can realize the Z2 symmetry
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breaking. After Z2 symmetry breaking, φ and S ′ will mix with each other. Because we

cannot forbid the direct couplings between the SM singlet S ′ and the observable sector, this

simplest model is excluded unless we have huge fine-tuning.

Therefore, we consider a DM sector with two SM singlet fields φ1,2 and a discrete Z3

symmetry. Under Z3 symmetry, φ1,2 transform as follows

φ1 → wφ1 , φ2 → w2φ2 , (3)

where w ≡ ei2π/3. All the other fields in our model are neutral under the Z3 symmetry, so,

any renormalizable coupling term between the DM sector and observable sector is forbidden

due to the Z3 symmetry and R-parity. In particular, the traditional particle physics in the

observable sector will not be affected. The most general Z3−invariant and renormalizable

superpotential in the DM sector, as well as the corresponding supersymmetry breaking soft

terms are

WDM =
λ1

3
φ3
1 +

λ2

3
φ3
2 +Mφφ1φ2 ,

−LDM
soft =m2

φ1
|φ1|2 +m2

φ2
|φ2|2 +

(
Aλ1

3
λ1φ

3
1 +

Aλ2

3
λ2φ

3
2 +BφMφφ1φ2 + h.c.

)
. (4)

In fact, this model not only preserves Z3−symmetry, but also a trivial R-parity. In the

following, we shall prove that this simple DM sector can break the Z3−symmetry sponta-

neously, and has a proper spectrum with a TeV-scale decaying DM coupling to the observable

sector.

As poingted out in the Introduction, to have the desirable DM lifetime, abundance and

decay products, the DM should couple to the RHNs via the dimension-five operators sup-

pressed by the GUT scale ∼ MGUT . This can be achieved by integrating out a heavy SM

singlet field X , which mediates the interactions between the DM sector and observable

sector. So we consider the following superpotential

W ⊃MNi

2
N2

i + Y N
ij LiHuNj +

λXi

2
XNiNi

+ λXφφ1φ2X +

(
MX

2
X2 + irrevelant terms

)
, (5)

with MX ∼ MGUT . For simplicity, we have assumed that the RHNs are in the mass basis.

We can explain the neutrino masses and mixings by employing some non-Abelian flavor

symmetry such as A4 [20], although we do not consider it here. In addition, we do not

consider the superpotential XHuHd so that we can explain the PAMELA experiment. This

can be realized in the five-dimensional scenario compactified on S1/Z2 (or in the M-theory on

S1/Z2) where X and Hu/Hd are localized on the different D3-branes on the two boundaries

of S1/Z2 while the right-handed neutrinos are in the bulk.
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To obtain the effective action below the scale MX , we integrate out the heavy field X

through its equation of motion

MXX + λXφφ1φ2 + λXiN
2
i = 0 . (6)

So we obtain the desirable dimension-five operators, which describe the interactions between

the DM sector and RHNs. The effective superpotential are

WN,eff =Whid −
λXφλXi

2MX
φ1φ2N

2
i

+

(
MNi

2
N2

i + Y N
ij LiHuNj

)
+ (...) , (7)

where dots denote the irrelevant corrections after integrating out X . Also, the corresponding

supersymmetry breaking soft terms are given by

−Lsoft ⊃Lhid
soft +m2

Ñi
|Ñi|2

+

(Cφ

2
AφNi

φ1φ2N
2
i + AijY

N
ij L̃iHuÑj +

BNi

2
MNi

Ñ2
i + h.c.

)
, (8)

where

Cφ ≡ −λXφλXi

MX
. (9)

Especially, the effective action described by Eqs. (7) and (8) will provide the dynamics to

freeze-in the DM particles, and generate baryon asymmetry at the scale around MNi
.

To obtain the effective action below the right-handed neutrino mass scale, we further

integrate out the RHNs through their equations of motion

MNj
Nj + Y N

ij LiHu −
λXφλXi

MX
φ1φ2Ni = 0 . (10)

Then, the leading order operators coupling φi to the SM particles are dimension-seven

operators presented in the Introduction, Cijφ1φ2(LiHu)(LjHu) (also see Fig. 1), which can

account for cosmic ray anomalies. The operator coefficients are

Cij = −λXφλNl

MX

Y N
il Y

N
jl

M2
Nl

, (11)

where l is summed over three RHNs. Those coefficients have a clear correlation with neutrino

Dirac Yukawa couplings as well as the light neutrino Majorama mass matrix. After Z3

symmetry breaking by the VEVs of φi, we obtain the renormalizable interactions between the

DM and (s)leptons from superpotential terms φνiνj , as well as the dimension-five interactions

φνi(LjHu). The dimension-five operators are interesting since the DM particles can decay

dominantly to the µ and τ leptons due to the neutrino TBM.
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FIG. 1: Feymann diagram for the dimension-7 operators Cijφ1φ2(LiHu)(LjHu)/MXM2
Nl

generated

by integrating out X and Ni at tree level.

B. Spontaneously Z3 Symmetry Breaking and Decaying DM

Cosmic ray anomalies can be explained elegantly by the long-lived decaying DM with

lifetime τ ∼ 1026s that decay dominantly to the charged leptons. Because the DM lifetime

is so long, it is natural to have a symmetry if the DM is stable. In our model, this symmetry

is the discrete Z3 symmetry. To break the Z3 symmetry spontaneously, we consider the

relevant scalar potnetial V (φi) from Eq. (4)

V (φi) =|λ1φ
2
1 +Mφφ2|2 + |λ2φ

2
2 +Mφφ1|2

+m2
φ1
|φ1|2 +m2

φ2
|φ2|2 +

(
Aλ1

3
λ1φ

3
1 +

Aλ2

3
λ2φ

3
2 +BφMφφ1φ2 + h.c.

)
. (12)

Note that MX ≫ Mφi
, the contributions to the low energy effective scalar potential from

the superpotential Xφ1φ2 are very small, and then we do not consider them. Because

Eq. (12) contains quite a few parameters, analytical study is pretty difficult. To reduce the

parameters in the DM sector, we assume that the squared soft masses m2
φi

are universal,

and the trilinear soft terms Aλi
are universal. Moreover, to avoid the Landau pole problem

for Yukawa couplings below the GUT scale, we choose λ1 = λ2 = 0.3.

First, we parametrize the fields φi as follows

φi = vi +
φ0
i,R + i φ0

i,I√
2

, (13)

where “0” denotes the interaction eigenstates. We require that the spectrum have the

following properties: (i) The lightest scalar as the DM particle should be about 2 TeV from

the Fermi-LAT electron excess at high energy region. (ii) There should be a heavy and

sufficient long lived Rp−odd fermion with mass about 5 TeV so that we can solve the small

scale problem. Although these requirements impose some constraints on parameter space,

they can still be satisfied easily. In the following, we present an explicit example whose
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input parameters are

λ1 = λ2 = 0.3, Mφ = 1.0TeV,

m2
φi

= 200GeV2, Bφ = −600GeV, Aλi
= 600GeV. (14)

Let us comment on the above choice of parameters. With the fixed λi, without tuning

on supersymmetry breaking soft terms, larger Mφ will generate larger VEVs for φi as well

as heavier spectrum, which is disfavored by the DM mass requirement. Because Aλi
have

the same sign, we choose negative Bφ so that the VEVs for φi have the same sign as well

and we can have an absolute stable vacuum. The larger A−terms help us to have a more

phenomenologically interesting spectrum, i.e., to increase the mass splitting between φ̃ and

φR and meanwhile to keep mφ̃ < mφR
+mφ̃ ′ .

Numerically, one global minimum is located at

〈φ1〉 ≡ v1 ≈ −6.06TeV, 〈φ2〉 ≡ v2 ≈ −6.57TeV. (15)

At this vacuum, the various mass eigenvalues and corresponding eigenstates are respectively

given by

mφR
≈ 2.60TeV, mφ′

R
≈ 4.81TeV,

mφI
≈ 2.91TeV, mφ′

I
≈ 4.83TeV,

mφ̃ ≈ −4.80TeV, mφ̃ ′ ≈ −2.78TeV. (16)

φR = 0.70φ0
1,R + 0.71φ0

2,R, φ′
R = 0.71φ0

1,R − 0.70φ0
2,R,

φI = 0.82φ0
1,I + 0.58φ0

2,I , φ′
I = −0.58φ0

1,I + 0.82φ0
2,I ,

φ̃ = −0.65φ̃0
1 + 0.76φ̃0

2, φ̃ ′ = 0.76φ̃0
1 + 0.65φ̃0

2. (17)

Thus, the lightest CP-even state φR is the DM particle accounting for the cosmic ray anoma-

lies. φI , φ̃
′ and φ′

I,R are unstable but will contribute to the DM abundance in the freeze-in

mechanism. The heavy metastable state φ̃ is crucial to solve the small scale problem on

power spectrum. Notice that we have arranged parameters to have mφ̃ < mφ̃ ′ + mφR
, φ̃

can not decay to φ̃ ′ and φR at two-body level. We emphasize that with suitable mass φ̃ ′

might also constitute a component of DM today by forbidding its two body-decay to φR

and gravitino G̃. By the way, all the mixing factors are nearly democratic about 0.7, so for

simplicity we may drop this factor in the following discussions, and the subscripts for φi may

be ignored since they will neither affect the discussions nor bring any misunderstanding.

After the Z3 symmetry breaking, the lightest Z3−odd state is unstable and decays to

leptons through the heavy RHNs, which is described in Fig. 1. The DM particles can decay

via the operators Cijφ1φ2(LiHu)(LjHu), and we are interested in the final sates containing µ
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and τ . At the leading order, such DM decays are described by the dimension-five operators

C5
ijφνi(LjHu) obtained from dimension-seven operators with one VEV for φi and one VEV

forHu. To show the close relation between DM decay and neutrino masses/TBM, we express

the dimension-five operator coefficients into the light neutrino mass matrix elements. First,

the Dirac neutrino mass matrix can be written as

MLR = Y N〈H0
u〉 = v sin β × (N1,N2,N3), (18)

where Ni is the i-th column, and tan β = 〈H0
u〉/〈H0

d〉 as in the MSSM, v =√
(〈H0

u〉)2 + (〈H0
d〉)2 = 174 GeV. Using the seesaw formular MLL = MLRM

−1
RRM

T
LR, we

get the coefficients

C5
ij =− λXφ

MX

(
v2 sin2 βNlN T

l

MNl

)

ij

λXl vφ
v sin βMNl

≈− λXφ

v sin β

(
(MLL)ij
MX

)(
vφ
MN2

)
, (19)

where vφ denotes v1 or v2, and the family universal couplings λXl ≃ 1 are assumed. This

approximation is valid if MN2
dominates the seesaw contributions to MLL and MN2

∼ MN1
.

Thus, the DM decays are closely related to the light neutrino mass matrix (elements), which

will be studied in the next Section. We will show that the entries in the light neutrino mass

matrix (MLL)ij are at the same order (about the heaviest neutrino mass) for i, j = 2, 3,

while the other entries are much smaller (around the second heaviest neutrino mass or

smaller).

The DM branch decay lifetime is

τ(φR → ν̃iℓjH̃u) ≈ 768π3 × 1

(C5
ij)

2

1

m3
φR

= 3.6× 1026 ×
(

MX

1015GeV

)2

×
(
0.05 eV

(MLL)ij

)2

×
(

MN2

104GeV

)2

×
(
5TeV

vφ

)2

×
(
2TeV

mφR

)3

s, (20)

where we have taken tan β = 5 throughout this paper. The actual lifetime does not depend

on it much since a larger tan β always gives sin β ≈ 1. We keep λXφ as an adjustable

parameter to obtain the proper lifetime of φR, which will be chosen as 0.5 from then on.

In order to generate the DM density via freeze-in mechanism, we choose MNi
/MX ∼ 10−11.

And then we explain the neutrino masses and mixings via the low-scale seesaw mechanism.

Therefore, as pointed out in the Introduction, the crucial point to get such a long lifetime

decaying DM is the combined factor MLL/MX ∼ 10−26.
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C. N2 Dominant Seesaw Mechanism and Cosmic Ray Anomalies

Although our model can generate the suitable DM lifetime naturally, the dominant decays

to the leptonic final states and the fittings of the PAMELA and Fermi-LAT data need further

study. Especially, the decaying product should be dominated by the second and third families

of charged leptons [21]. Note that the approximate µ− τ symmetry is introduced to explain

the light neutrino masses and mixings [22], we suggest that the DM decay is related to the

N2 dominant seesaw mechanism which can explain neutrino TBM [12].

With approximate µ−τ symmetry [22], we obtain the general light Majorana mass matrix

by four parameters

MLL = m0




X Y Y

Y Z W

Y W Z


 . (21)

It predicts the maximal atmosphere mixing angle θ23 = π/4 and θ13 = 0, but leave the solar

mixing angle θ12 arbitrary. Taking sin2 2θ12 = 8/9, the neutrino TBM is obtained [23]. The

TBM MLL mass matrix only has three parameters since this fixed θ12 is equivalent to a

relation Z +W = X + Y . So we have

MLL = m0




X Y Y

Y X + V Y − V

Y Y − V X + V


 . (22)

In the framework of seesaw mechanism with heavy RHN dominance, the crucial point of

neutrino mixings is the specially aligned Dirac neutrino mass matrix (or say the Yukawa

coupling matrix). Concretely speaking, the neutrino TBM can be understood by the aligned

vacuum from an A4 discrete flavour symmetry breaking [24].

To explain why the DM decays dominant to muon and tau via neutrino physics, we

modify the original Dirac Yukawa coupling ansatz used in Ref. [12] as follows

MLR =




A 0 0

A −B 0

A B C


 . (23)

To produce the realistic neutrino masses and mixings, we assume three RHNs with proper

mass hierarchy MN1
. MN2

≪ MN3
so that the light neutrino mass matrix accommodates

both the TBM and the µ + τ dominated decay product of DM. Thus, the light neutrino
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mass matrix is

MLL = v2 sin2 β

(N1N T
1

MN1

+
N2N T

2

MN2

+
N3N T

3

MN3

)

= m0




X Y Y

Y X + V Y − V

Y Y − V X + V


+O(C2/MN3

) , (24)

where X = Y = A2/(MN1
m0), and V = B2/(MN2

m0). The last term gives the subdominant

contributions to MLL, but it is still important for the mass of the lightest neutrino.

Now we show that the DM dominant decay channel to µ+ τ is a natural result for the N2

dominant seesaw mechanism if the neutrino masses are normal hierarchy. Combining the

DM decays with neutrino masses and TBM gives some contraints on the free parameters.

First, it is obvious that MLL should be in the second RHN dominance. Next, with Eq. (24)

we obtain three neutrino approximate masses

mν3 ≈ 2Vm0 =
2B2

MN2

, mν2 ≈ 3Xm0 =
3A2

MN1

, mν1 . O
(

C2

MN3

)
, (25)

in a normal hierarchy form. Thus, the neutrino oscillation data ∆m2
21 ≈ 7.65 × 10−5 eV2

and ∆m2
31 ≈ 2.40× 10−3 eV2 suggest that

B2

MN2

:
A2

MN1

≃ 8.4 : 1 , (26)

is valid when the N3 is sufficient heavy [25]. But from Eq. (19), the dimension-five operator

coefficients are proportional to 1/M2
Nl
. And then they disfavor large hierarchy MN2

≫ MN1
.

So the hierarchy in Eq. (26) is mainly due to the moderate relation A < B. Because B2/MN2

will appear several times later, we fix it in the massless ν1 limit (or say infinite mN3
limit)

B2

MN2

≈
√

∆m2
31/2 ≈ 0.035 eV. (27)

The DM φR decays to the SM fermions are the dominant primary source of comic ray

since the lifetime of other states such as φ̃ is much short at the cosmic time scale. At tree

level, the φR three-body decay modes are

φR → ℓiHuνj , ℓ̃iH̃uνj , (28)

and the corresponding lifetime estimation is given in Eq. (20). In Ref. [10], it has been

explicitly simulated the electron spectra, and found that the spectra from direct hard leptons

plus the soft contributions from cascade decays via the slpeptons and Higgs, Higgsinos are

able to fit the PAMELA and Fermi-LAT experiments while not produce the anti-proton
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excesses in the constrained MSSM. Moreover, for the two-body decay modes, φR decays to

pure (two) neutrinos. The branch decay lifetime is approximately given by

τ(φR → νiνj) ≈ 8π × 1

(C5
ij)

2

1

m3
φR

(
mφR

v sin β

)2

, (29)

which is about 20% of the one through three-body decays. Assuming a lifetime about

5× 1026s for three-body decay modes to explain the comic ray anomalies, we have τ(φR →
νiνj) ∼ 1026s. The produced neutrino signals are potentially detectable with the upcoming

IceCube neutrino observatory [26], and the constraints on the DM models can be found in

Ref. [27].

D. DM Density from Freeze-in Mechanism

The decaying DM abundance can be produced naturally via the freeze-in mechanism (for

a brief review, see Appendix A) in our models. Let us explain the cosmological setup first

since it is important to make freeze-in mechanism work. The initial relic density of φi should

almost vanish, while (s)RHNs have the thermal density at least at T ∼ MN . However, for

the low-scale seesaw mechanism in the MSSM, the (s)RHNs only weakly interact with the

plasma because the neutrino Dirac Yukawa couplings are small about 10−5. Thus, after

inflation the MSSM particles in the plasma alone cannot produce the thermal (s)RHNs.

But this problem can be solved easily in the Next to the MSSM (NMSSM), where the

superpotential term SN2
i can be introduced. Also, the suitable density for the (s)RHNs can

be produced non-thermally by coupling them directly to the inflaton field. Thus, we assume

the (s)RHNs in the plasma at the temperature T & MNi
. But the initial densities for φi are

ignorable since they are SM singlets and only very weakly interacts with the (s)RHNs.

However, during the decoupling of Ñi, in the absence of inverse decay, the tiny branch

decays or the scattering processes of Ñi and Ni produces φi. To have the natural relic

densities of φi via freeze-in mechanism, the typical couplings are required to be around 10−13

for two-body decays and 10−11 for two to two scattering processes [14]. To be concrete, we

give the relevant terms between (s)RHNs and φi/φ̃i for freeze-in mechanism

−L ⊃Cφ(φ1φ̃2 + φ2φ̃1)ÑiNi +
Cφ

2
φ̃1φ̃2Ñ

2
i + |Fφ1

|2 + |Fφ2
|2 + |FNi

|2,

→Cφ(v1φ̃2 + v2φ̃1)ÑiNi + CφMNi

(
φ1φ2ÑiÑ

∗
i + h.c.

)
+ (...), (30)

where we only consider the dominant terms, and dots denote many ignored terms, such as

the supersymmetry breaking trilinear soft terms since the freeze-in amplitudes are controlled

by MNi
≫ Aij . Similarly, the scattering processes are also sub-dominated sinces they are
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proportional to vi which are several times smaller than MNi
in our model. In the precise

calculations, one has to transform the interaction eigenstates to the mass eigenstates. For

the DM state transformations, please see Eq. (17). In the following analysis we shall show

that the DM relic density can indeed be obtained through the freeze-in mechanism, and the

order-one mixing factor is not considered for simplicity. The mass eigenstates for Ñi are

Ñi,± =
1√
2
(Ñi ± Ñ∗

i ), (31)

where the squared mass eigenvalues are respectively given by M2
Ñi,±

= M2
Ni

+ m2
Ñi

± BNi
.

Here, m2
Ñi

are the soft mass square for the sRHNs.

First, the freeze-in FIMPs from Ñi,+ andNi two-body decays Ñi,+ → Niφ̃ andNi → Ñi,−φ̃

as well as Ñi,+ → Ñi,−φIR are in general kinetically forbidden. In fact, in the natural

soft mass scale around O(1 TeV), the mass splittings among Ñi,+, Ñi,− and Ni are about

M3
SUSY /M

2
Ni
, which at most are tens of GeVs. Consequently there are no decay channels.

In fact, it is required for proper DM relic density since the typical couplings given above

are ∼ MNi
/MX ≫ 10−13. In short, these two-body decays must be forbidden (or at least

suppressed sufficiently), otherwise, the freeze-in mechanism tends to over freeze DM(s) into

the plasma. We have to point out that the above conclusion holds only when there are no

mixings among the RHNs. If there exist the mixings ǫij in a complete model, we have to

require that ǫijMax{MNi
,MNj

}/MX ∼ 10−13 since the mass splittings between the RHNs

should be small enough to suppress the transition between Ni and Nj significantly.

The scattering process ÑiÑi → φIRφIR from the second line of Eq. (30) can produce

the phenomenologically important components φIR. The scattering process ÑiNi → φ̃φIR

can be studied similarly, so we will not present it in this paper. Numerically, the exact

coincidence is a result of the dimension-five operators φ1φ2NiNj/MX . Note that the RHNs

have masses about 10 TeV, and MX can be chosen a little bit smaller than MGUT , we obtain

MNi
/MX ∼ 10−11 at the desired order. For the scattering processes, we consider the inter-

action eigenstates as the mass eigenstates for simplicity since the mixings are democratic.

The total cross sections are simply given by

σ(ÑiÑi → φφ) =
λ2
Ni

8πs
λ−1/2(1, xÑi

, xÑi
) . (32)

The function from phase space λ(a, b, c) ≡ (a− b− c)2 − 4bc (xI ≡ m2
I/s) implies that only

the lighter species (at least lighter than Ñi) could be freezed into plasma with significant

number densities. Numerically, the integral factor I[x, z] in Eq. (A7) is about 0.5, so the
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relic densities of φIR and φ̃ are estimated to be at the right order

Ωφh
2 ∼

6.0× 1022g2
Ñi

gS∗
√
gρ∗

(
mφ

MNi

)
λ2
Ni

=0.065
( mφ

2.5TeV

)(10TeV

MNi

)(
2293/2

g∗MSSM

)(
λNi

5× 10−11

)2

, (33)

where mφ denotes the mass of φIR or φ̃. The relic density of gravitino G̃, which comes from

the non-thermal production via the φ̃ late decay, is about one order smaller than ΩφR
due

to the mass ratio mφR
/mG̃ ∼ 10. We emphasize that this is not the final DM relic density,

and the actual DM density is obtained by calculating all the processes with exact mixing

factors. However, our results are enough to show that we can generate the correct DM relic

density in our parameter space.

III. PHENOMENOLOGICAL CONSEQUENCES

A. Warmed G̃ and Small Scale Problem

In our model, both φR and φ̃ are generated with equal number densities via the freeze-

in mechanism. Because φ̃ is a relatively heavy metastable Rp−odd state, it will decay

and produce some relativistic particles. Thus, we can solve the small scale problem on

power spectrum if the relativistic particle is the DM candidate like the LSP in the MSSM.

If the comoving free-streaming scales of the relativistic particles, i.e., their motion in the

comoving framework from their production time tI till to the matter and radiation equality

era tEQ ≈ 2.2× 1012s, can reach the small scale O(0.1) Mpc, the power spectrum on small

scale can be reduced [28]. Such warm DM scenario was proposed in Ref. [15].

To solve the small scale problem in our model, we require that φ̃ have a proper mass

(about 5 TeV in our example parameters) and a proper lifetime. Lifetime is fine in our

model. Since φ̃ is odd under Z3 × Rp, its leading decay mode is given by (as mentioned

previously, in our interesting parameter space φ̃ can not decay to φ̃ ′ and φR at two-body

level)

φ̃ → G̃+ φR → ... . (34)

Because the decay rate is suppressed by 1/M2
Pl in gravity mediation, the φ̃ lifetime can be

sufficiently long about 10 − 1000 s, and can be even longer depending on mass splitting

between the bosonic and fermionic states. However, if G̃ is not the LSP, the above decay

chain will produce a LSP such as neutralino. Thus, we have two viable solutions: (i) G̃

itself is the LSP with mass about O(100) GeV, then it is warmed enough to reduce power
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spectrum on small scale; (B) G̃ is not the LSP and has mass & O(TeV). We require that

G̃ can produce the warm LSP via its decay while not forbid the two-body decay of φ̃. In

short, these viable solutions do not conflicts with the parameter space in the MSSM.

Because the late decay of G̃ may spoil the successful predication of big bang primary

nucleosynthesis (BBN), we consider G̃ as the LSP for simplicity. In fact, this process can be

regarded as a method of non-thermal production of G̃. The comoving free-streaming scale

of a freely propagating particle can be calculated from the formular [15]

Rf =

∫ tEQ

tI

v(t′)

a(t′)
dt′

≃2v0tEQ(1 + zEQ)
2 log

(√
1 +

1

v20(1 + zEQ)2
+

1

v20(1 + zEQ)

)
, (35)

where zEQ and tEQ are the red shift and comic time at the matter-radiation equality era.

Also, v0 is the current velocity of G̃

v0 =
T0

TI

EI

mG̃

, (36)

where T0 ≈ 2.73 K, and EI and TI are respectively the energy and temperature when warm

G̃ is produced. According to Eq. (35), in order to explain the small-scale structure, v0 should

take the value 10−8 − 10−7 [15].

If G̃ is light, v0 is not dependent on its mass mG̃. Thus, with the proper mass for φ̃ in

our example, we can indeed solve the small scale problem. Let us explain it in details. The

two-body decay rate of φ̃ to its partner φR plus gravitino is calculated to be [29]

ΓI =
1

48π

m5
φ̃

m2
G̃
M2

P



1−

(
mφR

mφ̃

)2




4

, (37)

with the reduced Planck mass MP ≡ MPl/
√
8π ≃ 2.4× 1018 GeV. Notice that this result is

only valid when gravitino is much lighter than the mass splitting between particle and its

superpartner, this is the exact situation needed in our model: G̃ has a large velocity (warm

enough) when it was produced. According to Eq. (37), the cosmological temperature (in the

radiative dominant era) is given by TI =
(
0.301g

−1/2
∗ MPl/tI

)1/2
, where g∗ is the effective

relativistic degree of freedom in the plasma, and tI = 1/ΓI ∼ O(10)s with mG̃ ∼ 100 GeV.

Then we can parametrize v0 as follows

v0 = 1.8× 10−8 ×
( g∗
3.36

)1/4( mφ̃

5TeV

)3/2( ∆m2
φ

20TeV2

)
, (38)

where ∆m2
φ ≡ m2

φ̃
−m2

φR
, and we have used EI = mφ̃/2

(
1−m2

φR
/m2

φ̃

)
≈ mφ̃/2. As pointed

out at the beginning, v0 does not depend onmG̃ explicitly, and the solution to the small-scale

problem only depends on the mass of φ̃.
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B. Baryon Asymmetry via Soft Leptogenesis

Interestingly, we can also explain baryon asymmetry via the soft leptogensis, since the

proper decay rate of φR requires a low-scale seesaw mechanism with MNi
∼ 104 GeV at

least for i = 1, 2. Consequently, the new lepton number violation and CP violation in the

supersymmetry breaking soft terms play major role in soft leptogensis. The soft leptogensis

can work only well below MNi
< 109 [17, 18], which is the low bound on the right-handed

neutrino mass in thermal leptogensis. And then reheating temperature is well below 109

GeV as well. Thus, we can reduce the gravitino density produced by thermal scatterings

in the thermal bath, and then the G̃ late decay will not destroy BBN [30]. In short, the

possible gravitino problem in the thermal leptogenesis can be solved. For a complete review,

please see Ref. [31]. In our model, the relevant Lagrangian for soft leptogenesis is

−L ⊃ 1√
2
Ñ2+(Y

N
i2 )

∗(MN2
+ A∗

i2)L̃
†
iH

†
u +

1√
2
Ñ2−(Y

N
i2 )

∗(MN2
−A∗

i2)L̃
†
iH

†
u

+ (Y N
i2 )

∗(Ñ2+ − Ñ2−)L
†
iH̃

†
u +

1

2
M2λ̃2λ̃2 + h.c., (39)

where Ai2 = |Ai2|eiθAi2 , and all the other soft terms have been taken real. Moreover, the

SU(2)L gaugino mass M2 is assumed to be real so that it will not induce large CP violation

in the MSSM.

In our model, the dominant contributions to the lepton number production come from

the interference between the tree-level decays of Ñi and the vertex corrections with gaugino

running in the loop, which are given in Fig. 2. The original soft leptogensis relies on the

self-energy corrections to Ñi, and it is the small mass splitting (controlled by the bilinear

soft terms BNi
MNi

Ñ2
i ) between the two real degrees of freedom of Ñi denoted with Ñi±

that resonantly enhances their CP-violation decays, see Fig. 2. To make the resonant effect

large enough, BNi
. 10−3MSUSY must be fine-tuned to be very small [17, 18]. Later, it was

found that the vertex corrections to Ñi decays with gaugino running in the loop contribute

to the lepton number asymmetry in a very different way, and then the normal value of BNi

is allowed [32]. This is important for our model to have successful soft leptogensis because

its UV completion does not suppress BNi
.

In the previous Section, we have considered the N2 dominant seesaw mechanism to pro-

duce MLL. Corresponding to it, this dominance again dominantly generate the lepton asym-

metry. This can be seen clearly from the explicit calculations of the lepton asymmetry
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produced by a single Ñi decays to lepton flavor α, using the procedure provided in Ref. [31]

ǫi,α ≡ γ(L̃αHu) + γ(LαH̃u)− γ(L̃†
αH

†
u)− γ(L†

αH̃
†
u)∑

β γ(L̃βHu) + γ(LβH̃u) + γ(L̃†
βH

†
u) + γ(L†

βH̃
†
u)

≈ 3α2|Y N
αi |2

4
∑

β |Y N
βi |2

M2

MNi

log
M2

2

M2
2 +M2

Ni

(
−|Ai2|
MNi

sin θAi2

)
∆BF (T ), (40)

where α2 = g22/4π and g2 is SU(2)L gauge coupling. This shows the N2 dominant contribu-

tions from Eqs. (18) and (26), while the others are sub-dominant. Note that Y Ni ∼ 10−5 in

our model, the contributions from self-energy corrections suppressed by |Y Ni |2/α2 are com-

pletely ignorable. ∆BF (T ), whose expression is given in Ref. [18], denotes for the thermal

effect in the thermal average of decay rates γ. Without it the above asymmetry vanishes

at zero temperature field theory due to the exact cancellations between the fermionic and

bosonic decay channels of Ñi. By the way, our results are consistent with a previous work

in Ref. [33] which used a different calculation method.

Li

˜Ni

Lα

˜Hu

Lα

˜Lα

˜Ni

Hu

˜Hu

˜Lα

Hu

˜Lα

Hu

Lα

˜Hu

FIG. 2: Lepton number and CP-violation decays of Ñi with gaugino running in the vertex correction

loop. Self-energy contributions are ignored since they are suppressed by the extra Yukawa couplings

Y Ni .

The evolution of Ñi lepton number violation decay and the evolution of α (α = e, µ, τ)

lepton flavor number are described by Boltzmann equations (BEs). Since the pure MSSM

interaction conserves the charge ∆α ≡ (Bf +Bs)/3− (Lf +Ls)α, where (Lf )α = ℓα+ eα and

Ls is the total lepton number in scalar leptons. Similar definition applies to the Bf,s. It is
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convenient to study the evolution of density ∆α, and the coupled BEs are [36]

∆′

Ñ
=−

∑

α

Sα(z)−
(
Y eq

Ñ

)′
, Sα(z) =

z

Y eq

Ñ

γα(z)

sHN
∆Ñ , (41)

Y ′
∆α

=− ǫα(z)Sα(z) +Wα(z)
∑

β

(Aαβ + Cβ) Y∆β
, (42)

where the derivative is on z ≡ MÑ/T , and ∆Ñ ≡ YÑ − Y eq

Ñ
. In this crude set of BEs, we

consider the ∆L = 1 two to two scattering processes that provide the CP asymmetry source,

as well as the wash-out from the top quark and gauge boson interactions. Also, the flavor

effect is kept for the low-scale soft leptogensis via the A matrix which expresses Yℓα as the

linear combination of Y∆α
[34], and via the C matrix which relates YHu

to Y∆α
[35]

A =
1

207
×




−64 5 5

5 −64 5

5 5 −64


 , Cβ =

1

9

∑

α

Aαβ = − 2

69




1

1

1


 . (43)

Our matrix is different from that in Refs. [33, 36] since in this model the soft leptogenesis

proceeds during the era T ∼ MN ≃ 104GeV, where all the Yukawa couplings and the CKM

mixings are in the chemical equilibrium. Also, the C matrix is included here since its entries

are larger than the mixing entries in A matrix. Moreover, in the simplified BEs, the source

term and wash-out terms can be rewritten analytically as follows

Sα(z) = z
K1(z)

K2(z)
Kα, Wα(z) =

1

4
z3K1(z)Kα, (44)

where the object Kα describes the degree of washout for a single flavor α

Kα ≡ Γα + Γ̃α

HN

=
mα

m∗
MSSM

,

mα = |Y N
α2|2v2 sin2 β/MN2

, (45)

where mα is equal to |B|2/MN2
for α = 2, 3 while vanishes for α = 1. In the MSSM using

g∗ = 228.75 at T ∼ MN , one obtains m∗
MSSM ≈ sin2 β × 1.58 × 10−3eV. Thus, K2,3 ∼ 20,

and then the soft leptogensis is in the strong wash out region [31, 34]. Finally, the sphaleron

processes transform the survival lepton asymmetry into baryon asymmetry, eventually gives

the baryon number density

Y MSSM
B =

nB − nB̄

s
=

10

31

∑

α

Y∆α
. (46)

With the initial density of Ñi in thermal equilibrium required by a successful freeze-in

mechanism, we present the numerical solutions to the baryon asymmetry evolution in Fig. 3.
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The observed baryon asymmetry YB = (8.75 ± 0.23) × 10−11 [37] is generated with the

following parameters: MN2
= 104 GeV, M2 = 250 GeV and |AN22

| = 300 GeV with phase

θA22
= −1/4. As the RHN mass decreases, for instance, MN2

= 4 × 103 GeV, the baryon

asymmetry tends to be overproduced. The reason is that the lepton asymmetry given in

Eq. (40) is proportional to 1/M2
N2

but linear to AN2
and M2. Because we have assumed that

the LSP G̃ has mass about 200 GeV, M2 can not be too small. Therefore, we can choose a

smaller |AN22
| = 100 GeV with phase θA22

= −1/5, or we can fine-tune the phase of AN22
.

Anyway, the observed baryon asymmetry can be obtained in the general parameter space.

2 4 6 8 10 12 14

-2.´10-10

0

2.´10-10

4.´10-10

6.´10-10

8.´10-10

z

Y
D

B

2 4 6 8 10 12 14

0

5.´10-10

1.´10-9

z

Y
D

B

FIG. 3: Baryon asymmetry Y∆B(z) versus z = MN2
/T . Left: MN2

= 104 GeV, M2 = 250 GeV and

|AN22
| = 300 GeV with θA22

= −1/4. Right: MN2
= 4 × 103 GeV, M2 = 250 GeV, |AN22

| = 100

GeV, θA22
= −1/5. Initial density of Ñ2 is taken as thermal density.

IV. DISCUSSIONS AND CONCLUSION

Cosmic ray anomalies from the Fermi-LAT and PAMELA experiments can be naturally

explained by the TeV-scale decaying DM with a very long lifetime ∼ 1026s which decays

dominantly to the muon and tau leptons. Note that the neutrino TBM can be realized

elegantly via the µ − τ symmetry, we conjectured that the DM decay is related to the

neutrino physics. We considered the supersymmetric Standard Model with three right-

handed neutrinos. To realize the decaying DM, we introduced a Z3 discrete symmetry and

two DM particles φ1 and φ2. Because φ1φ2 can couple to the right-handed neutrinos via the

dimension-five operators suppressed by the GUT scale MGUT , DM particle has a natural

lifetime around τ ∼ 1026s if the seesaw scale is about 104 GeV. In particular, the DM

particle will decay dominantly to the µ and τ final states due to the N2 dominant seesaw

mechanism. Moreover, the DM relic density, which usually is a problem in decaying DM

models, can be achieved naturally through the freeze-in mechanism with couplings typically
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about O(TeV)/MGUT . Simultaneously the small scale problem on the power spectrum can

be solved since the metastable particles in the DM sector, which are also freezed into the

thermal bath, can decay to the relativistic LSP in the supersymmetric SMs. Furthermore,

we showed that the baryon asymmetry can be generated via the soft leptogenesis in a large

region of the parameter space for supersymmetry breaking soft mass terms.
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Appendix A: A Brief Review of Freeze-In Mechanism

In this Appendix we will give a brief review of the freeze-in mechanism, but we shall

formulate it differently. The basic idea of freeze-in mechanism is that in the BE for FIMP

X , there is no inverse decay or scattering process to the mother particle that produces FIMP,

as a result even small interaction rate is also successful in generating significant relic density

for FIMP. As a starting point, the simple BE for X is (We consider the scattering process

as an example, and the similar expression holds for decay.)

Y ′(z) =
s z

H1

γ(A+B → X + C)

(sY eq
A )(sY eq

B )
YA(z)YB(z), (A1)

where the Hubble constant at T = MA is H1(T )|MA
= 1.66

√
gρ∗T 2/Mpl|MA

. In this paper,

we use gρ,s∗ to denote the effective numbers of degree of freedom in the thermal bath at the

freeze-in temperature T ∼ MA, respectively for the entropy density s and energy density ρ.

If A and B are assumed to be in thermal equilibrium during freeze-in, the BE reduces to

the situation discussed in Ref. [14]. The FIMP is produced dominantly at the temperature

around the mass of heavier bath particles, when the bath particles still track their equilibrium

distribution closely [14]. So the approximations are valid. In our paper, from Eq. (41) one

finds that Ñ and N deviate from their equilibrium typically at Tf ∼ MN/5 (due to strong

washout, sRHNs departure from equilibrium rather late), so the equilibrium approximation

is also employed here.

In our model, FIMP is freezed-in both from N± decays and their scatterings. First let

us discus the decay. The yield of X is produced simply by integrating the right-hand side

of Eq. (A1) over z from 0 to ∞. A good property of freeze-in mechanism is that Y (x)
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is insensitive to the UV physics, which is obvious from the integrand. So one can safely

ignore the time of lower bound which may sensitive to inflation or reheating at the UV. For

two-body decay, the thermally averaged decay rate is easily obtained analytically

γ(A → X + C) =
gAT

3

2π2
z2K1(z)Γ(A → X + C), (A2)

with gA the internal degrees of freedom of A. Furthermore, let us reasonably assume that

the freeze-in process lasts from z ≈ 0 till z & O(1) when generally the weakly interacting

particle A decouples from thermal bath. Then one has

Y (z & 10) ≈
∫ ∞

0

dz
z

sH1
γ(A → X + C)

=
135 gA

8π3(1.66)gs∗
√

gρ∗

MplΓ(A → X + C)

M2
A

. (A3)

Then the relic density of X is given by

ΩXh
2 ≈ 4.50× 1025 × λ2 gA

gs∗
√
gρ∗

MX

MA
, (A4)

where we have typically used Γ(A → X + C) = λ2MA/8π and dropped the phase space

factor. If multi thermal particles Ai contribute to freeze-in, i should be summed over. Next

we study the freeze-in mechanism through scattering processes. The thermally averaged

scattering rate is formally given by

γ(A+B → X + C) =
gAgBT

6

16π4

∫ ∞

(mA+mB)2/s

dx x4K1(x)λ(1, xA, xB)

× σ(A+B → X + C), (A5)

where x =
√
s/T , and then the integrand depends on z through its s dependence. Similarly,

the final yield of X is obtained by integrating over z from 0 to some large value

YX(∞) ≈
∫ ∞

0

dz
z

sH1

γ(A +B → X + C)

=
45 gAgB

2× 1.66× 256π7gs∗
√
gρ∗

Mpl

MA
× I[x, z],

I[x, z] ≡
∫ ∞

0

dz

∫ ∞

z

dx x2K1(x)Ξ(x, z) ∼ O(1), (A6)

where Ξ(x, z) = (16πs)λ(1, xA, xB)σ(x, z), and σ(x, z) is the scattering cross section. Even-

tually, the relic density is

ΩXh
2 ≈6.0× 1022 × gAgB

gs∗
√
gρ∗

×
(
MX

MA

)
× I[x, z]. (A7)
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