250 research outputs found

    Obstetrical Complications and Outcome in Two Families with Hereditary Angioedema due to Mutation in the F12 Gene

    Get PDF
    Backgroud. Hereditary angioedema (HAE) is characterized by recurrent swelling of the skin, the abdomen (causing severe acute pain), and the airways. A recently discovered type caused by mutations in the factor XII gene (designated as HAE type III) occurs mainly in women. Estrogens may play an important role, but few obstetrical complications have been reported. Case. We report the symptoms and obstetrical complications of women in two families with HAE attributable to the p. Thr328Lys mutation in the F12 gene. Clinical manifestations included acute and severe maternal abdominal pain, with transient ascites, laryngeal edema, and fetal and neonatal deaths. Patients had normal C4 levels and a normal C1 inhibitor gene. Administration of C1-inhibitor concentration twice monthly decreased the attack rate in one mother, and its predelivery administration (1000 U) led to the delivery of healthy girls. Conclusions. Obstetricians and anesthesiologists should be aware of this rare cause of unexplained maternal ascites and in utero or fetal death associated with edema

    Examples of multi-sensor determination of eruptive source parameters of explosive events at mount etna

    Get PDF
    International audienceMulti-sensor strategies are key to the real-time determination of eruptive source parameters (ESPs) of explosive eruptions necessary to forecast accurately both tephra dispersal and deposition. To explore the capacity of these strategies in various eruptive conditions, we analyze data acquiredby two Doppler radars, ground- and satellite-based infrared sensors, one infrasound array, visible video-monitoring cameras as well as data from tephra-fallout deposits associated with a weak and a strong paroxysmal event at Mount Etna (Italy). We find that the different sensors provide complementary observations that should be critically analyzed and combined to provide comprehensive estimates of ESPs. First, all measurements of plume height agree during the strong paroxysmal activity considered, whereas some discrepancies are found for the weak paroxysm due to rapid plume and cloud dilution. Second, the event duration, key to convert the total erupted mass (TEM) in the mass eruption rate (MER) and vice versa, varies depending on the sensor used, providing information on different phases of the paroxysm (i.e., unsteady lava fountaining, lava fountain-fed tephra plume, waning phase associated with plume and cloud expansion in the atmosphere). As a result, TEM and MER derived from different sensors also correspond to the different phases of the paroxysms. Finally, satellite retrievals for grain-size can be combined with radar data to provide a first approximation of total grain-size distribution (TGSD) in near real-time. Such a TGSD shows a promising agreement with the TGSD derived from the combination of satellite data and whole deposit grain-size distribution (WDGSD)

    Improvement of ash plume monitoring, modeling and hazard assessment in the MED-SUV project

    Get PDF
    Volcanic ash clouds produced by explosive eruptions represent a strong problem for civil aviation, road transportation and other human activities. Since Etna volcano produced in the last 35 years more the 200 explosive eruptions of small and medium size. The INGV, liable for its volcano monitoring, developed since 2006 a specific system for forecasting and monitoring Etna’s volcanic ash plumes in collaboration with several national and international institutions. Between 12 January 2011 and 31 December 2013 Etna produced forty-six basaltic lava fountains. Every paroxysm produced an eruption column ranging from a few up to eleven kilometers of height above sea level. The ash cloud contaminated the controlled airspace (CTR) of Catania and Reggio Calabria airports and caused tephra fallout on eastern Sicily sometime disrupting the operations of these airports. In order to give prompt and detailed warnings to the Aviation and Civil Protection authorities, ash plumes monitoring at Osservatorio Etneo, the INGV department in Catania, is carried out using multispectral (from visible to infrared) satellite and ground-based video-surveillance images; seismic and infrasound signals processed in real-time, a Doppler RADAR (Voldorad IIB) able to detect the eruption column in all weather conditions and a LIDAR (AMPLE) for retrieving backscattering and depolarization values of the ash clouds. Forecasting is performed running tephra dispersal models using weather forecast data, and then plotting results on maps published on a dedicated website. 24/7 Control Room operators were able to timely nform Aviation and Civil Protection operators for an effective aviation safety management. A variety of multidisciplinary activities are planned in the MED-SUV project with reference to volcanic ash observations and studies. These include: 1) physical and analogue laboratory experiments on ash dispersal and aggregation; 2) integration of satellite data (e.g. METEOSAT, MODIS) and ground- based measurements (e.g., RADAR, LIDAR) of Etna’s volcanic plumes to quantify mass eruption rate, grain-size distribution at source, and ash cloud concentration; 3) improvement of tools and automatic procedures for the short-term forecasting of volcanic ash dispersal by adopting a multi-model and multi-scenario approach; 4) development of short-term forecasting tools able to use direct measurements of the plume and ash cloud in almost real time (now-casting); 5) development of long-term probabilistic ash fallout maps at the supersite volcanoes.PublishedVienna, Austria4V. Vulcani e ambienteope

    Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation

    Get PDF
    Two global glaciations occurred during the Neoproterozoic. Snowball Earth theory posits that these were terminated after millions of years of frigidity when initial warming from rising atmospheric CO2 concentrations was amplified by the reduction of ice cover and hence a reduction in planetary albedo. This scenario implies that most of the geological record of ice cover was deposited in a brief period of melt-back. However, deposits in low palaeo-latitudes show evidence of glacial–interglacial cycles. Here we analyse the sedimentology and oxygen and sulphur isotopic signatures of Marinoan Snowball glaciation deposits from Svalbard, in the Norwegian High Arctic. The deposits preserve a record of oscillations in glacier extent and hydrologic conditions under uniformly high atmospheric CO2 concentrations. We use simulations from a coupled three-dimensional ice sheet and atmospheric general circulation model to show that such oscillations can be explained by orbital forcing in the late stages of a Snowball glaciation. The simulations suggest that while atmospheric CO2 concentrations were rising, but not yet at the threshold required for complete melt-back, the ice sheets would have been sensitive to orbital forcing. We conclude that a similar dynamic can potentially explain the complex successions observed at other localities

    Landscape of 4D Cell Interaction in Hodgkin and Non-Hodgkin Lymphomas

    Get PDF
    Profound knowledge exists about the clinical, morphologic, genomic, and transcriptomic characteristics of most lymphoma entities. However, information is currently lacking on the dynamic behavior of malignant lymphomas. This pilot study aimed to gain insight into the motility of malignant lymphomas and bystander cells in 20 human lymph nodes. Generally, B cells were faster under reactive conditions compared with B cells in malignant lymphomas. In contrast, PD1-positive T cells did not show systematic differences in velocity between reactive and neoplastic conditions in general. However, lymphomas could be divided into two groups: one with fast PD1-positive T cells (e.g., Hodgkin lymphoma and mantle cell lymphoma; means 8.4 and 7.8 µm/min) and another with slower PD1-positive T cells (e.g., mediastinal grey zone lymphoma; mean 3.5 µm/min). Although the number of contacts between lymphoma cells and PD1-positive T cells was similar in different lymphoma types, important differences were observed in the duration of these contacts. Among the lymphomas with fast PD1-positive T cells, contacts were particularly short in mantle cell lymphoma (mean 54 s), whereas nodular lymphocyte-predominant Hodgkin lymphoma presented prolonged contact times (mean 6.1 min). Short contact times in mantle cell lymphoma were associated with the largest spatial displacement of PD1-positive cells (mean 12.3 µm). Although PD1-positive T cells in nodular lymphocyte-predominant Hodgkin lymphoma were fast, they remained in close contact with the lymphoma cells, in line with a dynamic immunological synapse. This pilot study shows for the first time systematic differences in the dynamic behavior of lymphoma and bystander cells between different lymphoma types

    Cenozoic evolution of the steppe-desert biome in Central Asia

    Get PDF
    The origins and development of the arid and highly seasonal steppe-desert biome in Central Asia, the largest of its kind in the world, remain largely unconstrained by existing records. It is unclear how Cenozoic climatic, geological, and biological forces, acting at diverse spatial and temporal scales, shaped Central Asian ecosystems through time. Our synthesis shows that the Central Asian steppe-desert has existed since at least Eocene times but experienced no less than two regime shifts, one at the Eocene–Oligocene Transition and one in the mid-Miocene. These shifts separated three successive “stable states,” each characterized by unique floral and faunal structures. Past responses to disturbance in the Asian steppe-desert imply that modern ecosystems are unlikely to recover their present structures and diversity if forced into a new regime. This is of concern for Asian steppes today, which are being modified for human use and lost to desertification at unprecedented rates

    Rapport de sondages et d'analyses, Le Kilian et les carrières anciennes de trachyte dans la Chaîne des Puys (Puy-de-Dôme)

    Get PDF
    En 2008, l'existence de carrières souterraines médiévales avait été mise en évidence dans la pente ouest du Bois de Manson qui domine la dépression du Cratère Kilian, au pied sud du puy de Dôme. En 2009-2010, des sondages et prospections ont été étendus à tout l'ensemble du Kilian de façon à préciser l'étendue et, si possible, la chronologie de son exploitation dans le passé. Ces travaux ont permis d'observer, dans le fond du cratère et sur son flanc interne ouest, des amoncellements de déblais d'un volume considérable, témoignant d'une extraction de roche à grande échelle durant le haut Moyen Âge et très probablement aussi à l'époque gallo-romaine. Une nouvelle carrière souterraine a été découverte dans la pente interne ouest du cratère. La base du remplissage de cette carrière a livré des charbons datés entre la fin du IV e siècle et le début du VI e siècle par le radiocarbone, tandis que le sommet du remplissage contenait des tessons de céramique datables, par leur typologie, de la fin du V e siècle au début du VIII e siècle. L'état actuel des investigations conduit à faire l'hypothèse que les gallo-romains ont exploité, au fond du cratère, un trachyte compact dont on ne trouve aujourd'hui que les déchets de taille, et dont les affleurements sont masqués par les déblais, tandis que les artisans du Moyen Âge ont recherché un trachyte plus tendre dans les pentes hautes du cratère. Le Kilian doit donc s'ajouter aux trois sources actuellement connues de trachyte d'oeuvre dans le passé, à savoir les volcans Sarcoui, Aumône (ou petit Suchet) et Cliersou. Dès cette découverte, en 2008, s'est posée la question de savoir quelle part éventuelle le trachyte du Kilian avait pu prendre dans la construction du temple de Mercure au sommet du puy de Dôme et dans l'agglomération gallo-romaine située au col de Ceyssat. Pour y répondre, une campagne d'analyses géochimiques et pétrographiques été engagée pour caractériser, aux fins de comparaison, non seulement les trachytes du Kilian et ceux des ruines gallo-romaines, mais, de plus, les trachytes du Cliersou, de l'Aumône et du Sarcoui. Ces analyses ont finalement montré qu'il est possible de faire une discrimination statistiquement significative entre les différents trachytes étudiés, à l'exception de ceux du couple Cliersou-Aumône dont les laves sont très peu différentes les unes des autres. Le résultat le plus remarquable est que tous les trachytes gallo-romains échantillonnés (dont 10 échantillons distincts au temple de Mercure et 10 au col de Ceyssat) se rattachent sans ambiguïté au Kilian. En toute rigueur, ces nouvelles données ne permettent pas d'exclure sans appel la possibilité d'utilisation à l'époque gallo-romaine, au temple de Mercure et au col de Ceyssat, de trachytes provenant d'autres sources que le Kilian (cas des chaperons de mur du col de Ceyssat, provenant du puy de Dôme). Cependant, il faut ajouter qu'un examen visuel des trachytes d'oeuvre dans ces deux sites, portant sur un nombre de moellons et d'éléments architecturaux bien supérieur au nombre de ceux qui ont été analysés, conduit à conclure que leur source est probablement commune. Cette conclusion est basée sur un faciès minéralogique particulier, observable à l'oeil nu ou à la loupe

    Barcoding T Cell Calcium Response Diversity with Methods for Automated and Accurate Analysis of Cell Signals (MAAACS)

    Get PDF
    International audienceWe introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells

    Hadley circulation and precipitation changes control black shale deposition in the Late Jurassic Boreal Seaway

    Get PDF
    New climate simulations using the HadCM3L model with a paleogeography of the Late Jurassic [155.5 Ma], and proxy-data corroborate that warm and wet tropical-like conditions reached as far north as the UK sector of the Jurassic Boreal Seaway [~35oN]. This is associated with a northern hemisphere Jurassic Hadley cell and an intensified subtropical jet which both extend significantly polewards than in the modern (July-September). Deposition of the Kimmeridge Clay Formation [KCF] occurred in the shallow, storm-dominated, epeiric Boreal Seaway. High resolution paleo-environmental proxy data from the Kimmeridge Clay Formation [KCF; ~155–150 Ma], UK are used to test for the role of tropical atmospheric circulation on meter-scale heterogeneities in black shale deposition. Proxy and model data show that the most organic-rich section [eudoxus to mid-hudlestoni zones] is characterised by a positive δ13Corg excursion and up to 37 wt% total organic carbon [%TOC]. Orbital-modulation of organic carbon burial primarily in the long eccentricity power band combined with a clear positive correlation between %TOC carbonate-free and the kaolinite/illite ratio supports peak organic carbon burial under the influence of very humid climate conditions, similar to the modern tropics. This re-interpretation of large-scale climate relationships, supported by independent modelling and geological data, has profound implications for atmospheric circulation patterns and processes affecting marine productivity and organic carbon burial further north along the Boreal Seaway, including the Arctic
    corecore