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Abstract: Multi-sensor strategies are key to the real-time determination of eruptive source parameters
(ESPs) of explosive eruptions necessary to forecast accurately both tephra dispersal and deposition.
To explore the capacity of these strategies in various eruptive conditions, we analyze data acquired
by two Doppler radars, ground- and satellite-based infrared sensors, one infrasound array, visible
video-monitoring cameras as well as data from tephra-fallout deposits associated with a weak and a
strong paroxysmal event at Mount Etna (Italy). We find that the different sensors provide comple-
mentary observations that should be critically analyzed and combined to provide comprehensive
estimates of ESPs. First, all measurements of plume height agree during the strong paroxysmal activ-
ity considered, whereas some discrepancies are found for the weak paroxysm due to rapid plume and
cloud dilution. Second, the event duration, key to convert the total erupted mass (TEM) in the mass
eruption rate (MER) and vice versa, varies depending on the sensor used, providing information on
different phases of the paroxysm (i.e., unsteady lava fountaining, lava fountain-fed tephra plume,
waning phase associated with plume and cloud expansion in the atmosphere). As a result, TEM and
MER derived from different sensors also correspond to the different phases of the paroxysms. Finally,
satellite retrievals for grain-size can be combined with radar data to provide a first approximation
of total grain-size distribution (TGSD) in near real-time. Such a TGSD shows a promising agree-
ment with the TGSD derived from the combination of satellite data and whole deposit grain-size
distribution (WDGSD).

Keywords: tephra; remote sensing; plume height; mass eruption rate; total erupted mass; total
grain-size distribution

1. Introduction

The injection of large volumes of tephra into the atmosphere during explosive erup-
tions has the potential to cause air traffic disruption, while the associated fallout may
also impact public health, infrastructures, and various economic sectors (e.g., agricul-
ture, tourism) [1,2]. The near real-time monitoring of active volcanoes is, thus, critical
and requires strategies that are valid for a large set of eruptive conditions. At Mount
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Etna (Italy), a variety of monitoring networks exists and includes a unique set of comple-
mentary remote sensing systems with ground- and satellite-based infrared instruments
(e.g., [3–8]), Doppler radars [9–15], infrasound arrays [16,17], lidar [18–20] and visual
cameras [20–22] (Figure 1a). The Istituto Nazionale di Geofisica e Vulcanologia, Osser-
vatorio Etneo (INGV-OE) is also responsible for characterizing tephra-fallout deposits
associated with Etna explosive events [23–27]. Originally, each strategy has been used
individually to provide some estimates of key eruptive source parameters (ESPs), such as
mass eruption rate (MER), plume height (HT), total erupted mass (TEM), total grain-size
distribution (TGSD), necessary to volcanic ash transportation and dispersal models (VAT-
DMs) [3,4,12–14,16,21,28,29]. However, due to intrinsic limitations (e.g., sensor detection
limits, deposit exposure), individual strategies cannot provide a comprehensive characteri-
zation of all these ESPs. Recently, multi-sensor strategies have been developed to better
constrain MER, HT, and TGSD from ground sampling, plume models, and available remote
sensing systems [7,15,30–34]. Ultimately, multi-sensor strategies are also being used for
the real-time determination of column height during volcano monitoring activities [22].
However, the accuracy of such combined strategies remains poorly constrained. Moreover,
the sensor applicability limits have been investigated mostly during strong events and not
verified for less intense plumes.

Between 2011 and 2015, Etna has produced about 50 paroxysmal events associated
with the emission of fountain-fed tephra plumes. All paroxysms are characterized by
highly varying ESPs with plume heights ranging between 5.2 and 17.6 km above sea
level [8,33,35,36]. Such variability of eruptive processes may challenge the development
of multi-sensor strategies especially because they are mostly based on strong paroxysms
such as the events on 23 November 2013 [6,7,27] and 3–5 December 2015 [14,37,38]. In
order to discuss the capacity of various remote sensing strategies to provide accurate ESPs
regardless of eruptive conditions, here we characterize the weak paroxysm that occurred
on 10 April 2011 and we compare it with the strong paroxysm of 23 November 2013. It
is important to note that in addition to the interest in exploring the characterization of
weak paroxysms, which are generally more frequent than strong paroxysms [35,36], such
a selection was mostly driven by the availability of geophysical data as well as deposit
observations. In fact, both the 10 April 2011 and the 23 November 2013 paroxysms are
associated with data from two Doppler radars, visual and infrared cameras, satellite
retrievals, and infrasonic signals as well as deposit sampling.

On 8 April 2011, a strombolian activity started at the New Southeast Crater (NSEC)
around 06:00 UTC and lasted 2 days until the activity turned into lava fountaining at
09:12 UTC on 10 April 2011 [4,35]. This activity was weak and characterized by few
sustained ballistic emissions reaching about 200 m above the crater rim [5]. A fountain-
fed plume was emitted (Figure 1b) and reached altitudes of ~4 km above sea level at
10:00 UTC then about 7 km at 11:00 UTC according to the Hybrid Single-Particle Lagrangian
Integrated Trajectory Model (HYSPLIT) forecast [39]. Despite this weak activity, the plume
was sub-vertical due to the presence of low wind speed with an average of 7.6 m/s [4].
This eruption, that lasted 250 min [30], has been recorded by a total of six different remote
sensing systems (i.e., Microwave Weather Radar—MWR, L-Band Radar—VOLDORAD-2B,
Satellites—Aqua/Terra- Moderate Resolution Imaging Spectroradiometer (MODIS) and
MSG-Spinning Enhanced Visible and Infrared Imager (SEVIRI), Infrasound, Visual and
Infrared Cameras) (Figure 1) and the tephra-fallout deposit was sampled just after the
event at 18 different locations (Figure 2).
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from Catania visible camera (ECV) of the 10 April 2011 fountain-fed tephra plume. 

  

Figure 1. (a) Location of all remote sensing systems considered in this work (VOLDORAD 2B: V2B,
Thermal camera; X-band weather radar: MWR; visible camera: ECV; Infrasound arrays on Etna
ETN and Monte Vettore MVT) as well as the extension of the tephra-fallout deposit associated with
the 10 April 2011 event (black area; 1 g/m2 isomass line), and both the X-band (red area) and the
satellite-derived plume/cloud margins (blue area). Note that V2B and the thermal camera have the
same location. Inset: location of the remote sensors closed to the vent. (b) Observation from Catania
visible camera (ECV) of the 10 April 2011 fountain-fed tephra plume.
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Figure 2. Isomass map of the 10 April 2011 tephra-fallout deposit. Individual sample values of
ground accumulation (g/m2) are shown in white. Isoline values are displayed in yellow.

The 23 November 2013 paroxysm is one of the largest paroxysms that occurred at
Etna since 2001 [6,7,27,30–32]. Sustained lava fountains reaching heights >1 km above the
vent generated a moderately weak tephra plume at altitudes of 11–12 km a.s.l. under a
mean wind velocity of 17.9 m/s [4]. Bombs and blocks were carried up to 5 km from the
vent and a 2-cm thick tephra deposit with cm-sized lapilli up to 20 km from the vent was
observed [27]. The 23 November 2013 paroxysmal episode has been well documented and
already used in the past as a case study to test multi-sensor strategies [7,15,31,33].

This paper is organized as follows. In Section 2, we present all methodologies and
strategies used to derive ESPs of the 10 April 2011 and the 23 November 2013 paroxysms.
We describe the results in Section 3 and discuss them in Section 4. Finally, conclusions are
drafted in Section 5. See Appendix A for all acronyms and symbols used in this paper.

2. Methodology
2.1. ESPs from Tephra-Fallout Deposit

During the 10 April 2011 paroxysm, the fountain-fed plume was drifted southeast-
wardly by predominant winds and produced an elongated tephra-fallout deposit up to the
coastline (Figures 1 and 2). In total, 18 samples were collected from 7 to 22 km from the
NSEC (now simply called SEC). Unfortunately, as often happens at Etna due to the difficult
access to summit areas and inside La Valle del Bove, no proximal data, i.e., <7 km from the
vent, could be acquired.

2.1.1. Total Erupted Mass and Mass Eruption Rate

We compiled an isomass map from measurements of ground accumulation (g/m2)
across the entire deposit. The TEM associated with the tephra-fallout deposit (TEMdep) was
obtained based on the most used strategies in literature, i.e., by integrating the exponential
best fit [40], the power-law best fit [41], and the Weibull best fit functions [42] of mass/area
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data versus the square root of isomass contours (Figure 2). The average MERdep was then
derived by dividing the TEMdep obtained by the three integration methods by the duration
of the tephra plume emission based on the two most meaningful remote sensing systems
for this phase (i.e., MWR and satellite-based data; see following sections for more details).

2.1.2. Whole Deposit Grain-Size Distribution

All tephra-fallout samples were manually sieved down to 4 Φ (i.e., 63 microns).
We obtained the mass of all individual sieved fractions, i.e., each half Φ class, using a
10−4 g resolution weighing scale (Figure A1). We determined the size distributions of all
samples having a mass of≤1 g using a BETTERSIZER morpho-grainsizer (https://www.3p-
instruments.com/analyzers/bettersizer_s3_plus/; accessed on 26 May 2021). We applied
the Voronoi Tessellation method of Bonadonna and Houghton [41] to compute the whole
deposit grain-size distribution (WDGSD) by using a dedicated Matlab application [43].

2.2. ESPs from Doppler Radars

In this study, we consider two different ground-based pulsed Doppler radars whose
respective different characteristics allow for different ESPs to be constrained. One of these
radars is a scanning microwave weather radar (MWR) working at a wavelength λ of
3 × 10−2 m and located at Catania airport, 33 km south from Mount Etna (Figure 1a). The
MWR is operated by the Italian Civil Protection and provides 12 different elevated scans
up to a maximum distance of 80 km from the radar site and with space-time resolution
of 100 m and 10 min [7,14,15,33]. In addition, we take advantage of the fixed-pointing
VOLDORAD-2B (V2B), located at La Montagnola Station (2610 m a.s.l.) (Figure 1a), which
has been monitoring the near-source explosive activity of Etna’s summit craters since
2009 [11,12]. V2B is an L-band Doppler radar working at λ = 23.5 × 10−2 m and whose
sampling rate of 5 Hz allows to record explosive ejection at high time resolution. Besides,
open-access data based on Doppler radar records at Etna is made available, including
about 50 eruptive episodes since 2011 [12,44].

2.2.1. Mass Parameters from MWR

Various strategies have been developed to derive the MER from Doppler radar at
Mount Etna. First, assuming that MWR detects near-source eruptive jets that are vertical
during paroxysm and uniform within the vent surface, we can derive the MER based on
the surface flux approach (SFA; [15,33]). Similarly to the methodology of Calvari et al. [4]
to derive eruptive bulk volumes from thermal infrared images at Etna (see Section 2.4.1),
the SFA uses the following equation:

MERSFA(t) = vexit(t)ρxS (1)

where ρx is the density of the detected mixture set to 14.9 ± 3 kg/m3 for Mount Etna’s
lava fountains [15] and S is the eruptive vent surface (m2). Using this approach implies
that the exit velocity is linked to the whole erupted mixture, i.e., both lava fountains and
tephra plumes.

An additional strategy can be used to derive the MER from the MWR. This second
approach, called near surface approach (NSA; [14,33]), implies that the recorded velocity
corresponds to that of tephra particles entering the beam and not the exit velocity at the
vent. This method uses the following flux equation:

MERNSA(t) = Ct(t)ventry(t)A (2)

where MERNSA(t) represents the MER (kg/s) based on the NSA approach, Ct(t) is the
tephra concentration (kg/m3), ventry is the entry velocity of particles in the radar beam
(m/s) (as a first approximation ventry = vexit of Equation (1)), and A (different from S) is the
entry surface of the detected volcanic jet in the beam (m2).

https://www.3p-instruments.com/analyzers/bettersizer_s3_plus/
https://www.3p-instruments.com/analyzers/bettersizer_s3_plus/
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The computation of the tephra concentration (Equation (2)) detected by the MWR
is based on the volcanic advanced (or Ash) radar retrieval algorithm (VARR) developed
by Marzano et al. [10] and largely described in Marzano et al. [45], Mereu et al. [46], and
Marzano et al. [15]. Basically, the VARR provides synthetic estimates of concentration Ct
and mean diameter Dn of detected particle mixtures (see Section 2.2.3) by using a Monte
Carlo approach. By entering a given tephra size class [15,47], the VARR solves equations
that link the radar reflectivity factor Z (in dBZ) with both concentration and diameter [9,47].
Ct(t) is obtained using the following equation:

Ct(t) = βexp[Z(t)γ] (3)

with β and γ being two parameters determined by the VARR related to a given class of
tephra sizes (see [46]).

In addition to the SFA and NSA, the MWR provides 3D scans of the entire eruptive
columns [14,15] and first estimates of HT. From this, we can use the top plume approach
(TPA; [15]) by entering HT in the Degruyter and Bonadonna [48] formula to derive MERTPA.
An additional approach that can be used with MWR data, the mass continuity approach
(MCA; [15,47]), is based on the mass conservation equations and is calculated by con-
sidering the mass that enters and leaves a constrained volume above the eruptive vent
(see [15,46] for more details).

2.2.2. Mass Parameters from V2B

Given that the V2B’s beam is fixed and pointing right above Etna’s active vents,
it cannot provide direct information on the eruptive columns that are mostly fed by
lava fountains. Nonetheless, as for MWR determination of mass parameters, the SFA
(Equation (1)) and NSA (Equation (2)) can be used directly with V2B’s data [15]. The
exit velocity from V2B is calculated by taking into account the elevation angle (θ) of
the radar beam with vexit=vr/sin(θ) ([12]). In particular, 1/sin(θ) is equal to 4.45 in
Equation (1) for all events that happened before December 2012 at Etna and 3.89 for
the others until today [30]. Following V2B’s radar beam description provided by Don-
nadieu et al. [12] and Freret-Lorgeril et al. [30], A in Equation (2) corresponds to the half
3-D surface of the volume sounded above the vent, which has a height of 300 m (i.e., the
length of the two probed volumes above the NSEC; [30]) and a radius of 280 m. Finally, for
V2B, β and γ in Equation (3) are equal to 0.8827 and 0.04625, respectively.

In addition, assuming that the tephra plume is fed by the lava fountain, the product
between V2B echo power and radial velocity (vr) measured in beam volumes above the
erupting crater can also be used to calculate the MER. In fact, this product, directly propor-
tional to the tephra mass in the bin (mass proxy), has been shown to be proportional to HT
and has been calibrated using the theoretical formula of Degruyter and Bonadonna [48]
that links HT to the MER [30]. Estimates of MER using the proxy method have been applied
to 47 paroxysms that occurred at Etna between 2011 and 2015.

2.2.3. Radar Grain-Size Distribution

Dual-polarization radars, such as the MWR, provide the first estimates of grain-size
distributions related to the size classes they are sensitive to. As stated above, the VARR
provides an estimate of the reflectivity-weighted mean diameter Dn potentially detected by
both MWR and V2B by applying the following parametric equation:

Dn(t) = δexp[Z(t)ε] (4)

with δ and ε being two parameters, whose values depend on which class of tephra sizes is
input in the VARR algorithm (see [45,46]).

Depending on the aforementioned tephra size classes, β, γ, δ, and ε parameters
(Equations (3) and (4)) have different values and can provide polydisperse grain-size infor-
mation from MWR measurements [46]. Starting from Ct estimates of VARR
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(Equation (3)), the MWR grain-size distribution is computed as the ratio between the
particle weight Wp based on the mean diameter Dn (Equation (4)) and the total particle
weight Wt of the whole tephra plume. We compute Wp as the total tephra mass, for discrete
increasing steps of particle size and multiply by the gravitational acceleration in kg/m2/s.
Each discrete mass value is normalized by the total particle weight Wt, computed as the
integral of Wp extended to the whole particle diameter (D) range, i.e., a single class of
possible sizes from 0.008 to 64 mm used in this study. In this way, we derive the GSDMWR
(wt%) according to the following relation:

Wp(Dn) =

(
4
3

π

(
Dn

2

)3
ρp

)
g and wt% =

Wp(Dn)∫ ∞
0 W(Dn)dD

100 (5)

where g is the gravitational acceleration.

2.2.4. Plume Height

Given that the VOLDORAD 2B does not capture the whole plume but only the
jet region, HT can only be determined based on the MWR located at Catania airport
(Figure 1b). Plume height determination from MWR data is straightforward thanks to
each radar scan of the eruptive column with a resolution of 10 min [14,15,28]. Height mea-
surements by the MWR meet the usual detection limitations such as possible incomplete
volume filling, beam scans not going high enough, small particle concentrations, and/or
sizes remaining undetected on plume margins.

2.3. Mass Eruption Rate from Ground-Based Thermal Camera

The INGV-OE monitoring network includes ground-based thermal infrared cameras
that have been used to indirectly determine the MER during paroxysmal events [3,4,6]
(Figure 1a). By estimating the height of the thermally saturated domains in eruptive
columns that are assumed to correspond to lava fountains [4] and found to be very similar
to the vertical ballistic domain seen with the MWR [46], the Torricelli equation can be used
to compute the source exit velocity (vexit in m/s) [15,33]. Assuming that the tephra plumes
at Etna are fed by lava fountains during paroxysmal activity [15,30,33], the exit velocity
can be used to compute the MER using the SFA method (Equation (1); [15]).

2.4. ESPs from Satellite Retrievals
2.4.1. Plume Height

Satellite-based observations made each 15 min by the geostationary MSG-SEVIRI
platform are widely used to retrieve volcanic plume heights [7,8,49,50]. At Etna, they are
retrieved by applying the dark pixel procedure [51] over an area of 729 km2 (9 × 9 pixels of
3 km resolution) centered on Etna’s summit craters [6,7] (Figure 1a). Assuming that detected
plumes are in thermal equilibrium with the surrounding atmosphere, the volcanic plume
heights can be derived from the comparison between the darkest pixel (the pixel with
the lower brightness temperature computed at 11 µm) of the selected area and the ARPA
atmospheric profiles available at INGV-OE every 6 h [8,20,52]. When available, we also
use data obtained by MODIS onboard the NASA Terra and Aqua polar-orbiting platforms.
Despite their lower temporal resolution, i.e., three-four measurements per day over Etnean
area compared with 96 or 288 SEVIRI daily images (every 15 or 5 min respectively), MODIS
spatial resolution is higher with an image pixel resolution of 1 km2. One of the main
strengths of satellite-based detection is the capacity to capture volcanic plumes and clouds
over large distances from their source (Figure 1a). However, as ground-based visible
imagery, satellite-based ash detection suffers from the presence of meteorological water
and ice clouds in the plume environment. In addition, satellite-derived plume height might
present large uncertainties when plumes are too diluted to avoid ground contribution to
the overall mixture temperature [52].
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The discrimination between ash and ice/water vapor particles is obtained by ex-
ploiting their different absorption at 11 and 12 µm [53]. Negative brightness temperature
difference (BTD), the difference between the brightness temperature at 11 and 12 µm,
indicates the presence of ash and vice-versa for ice/water vapor particles. In particular,
the 10 April 2011 event shows the formation of large quantities of ice particles that cover
almost all the ash present in the volcanic cloud.

2.4.2. Erupted Mass and Grain-Size Distribution

Quantitative ESPs from SEVIRI data are derived using the volcanic plume retrieval
algorithm to estimate the amount of fine ash and also SO2 carried by volcanic clouds
(VPR; [7,29,54–56]). This procedure allows removing the detected volcanic cloud from
satellite images by a linear interpolation of the radiances at the plume edges. The compari-
son between the original and the interpolated images allows the estimation of the volcanic
cloud transmittances at SEVIRI thermal infrared (TIR) bands centered at 8.7, 10.8, and
12 µm (Channels 7, 9, and 10). From those quantities, the particles’ effective radius (Re)
and the aerosol optical depth (AOD) are derived. From both Re and AOD, the ash mass per
unit area (g/m2) can be computed using the Wen and Rose [57] simplified formula. The
same procedure stands for MODIS Channels 29, 31, and 32. Consequently, we can compute
the GSDsat by using values of particle radius in all pixels containing ash signal from the
beginning to the end of the paroxysmal event. The GSDsat was weighted in mass, for each
SEVIRI image, using the ratio between the total mass of pixels containing particles within
a certain Φ range and the total mass of the whole volcanic cloud. We computed the mean
GSDsat by averaging all the SEVIRI images that displayed at least 100 pixels containing ash
particles. It is important to note that the ash particles retrieved in the TIR spectral range are
those with effective radii (Re) between 0.5 and 10 µm (i.e., diameters comprised between
5.5 and 10 Φ).

From SEVIRI data, a mass flux (kg/s) used to determine a total erupted mass is
computed from a transect perpendicular to the plume dispersal axis at 15 km from the
vent and considering the wind speed derived from the ARPA profiles at the plume al-
titude. Finally, the MODIS-based mass fluxes are computed by applying the “traverse”
approach [52,58–61] and considering the wind speed at the volcanic cloud
altitude derived from the Trapani WMO atmospheric profiles (37.91 N, 12.50 E)
[http://weather.uwyo.edu/upperair/sounding.html (last access on 15 April 2021)].

2.5. ESPs from Infrasound Array

At Etna, two small aperture infrasound arrays managed by the University of Florence
are set up at 5500 (ETN at 2100 m a.s.l.) and 6500 m (MVT at 1800 m a.s.l.) from the
summit vents for monitoring purposes (Figure 1a). Infrasonic data have been shown to be
relevant at quantifying the dynamics of lava fountaining activity [62] and have been used
to produce an early-warning system for paroxysmal events at Etna [16,63]. Experimental
and numerical studies have been carried out to simulate the infrasound signal generated
in eruptive conduits [64,65]. The acoustic waves generated in a volcanic conduit will be
affected by the acoustic impedance contrast between the open-end surface of the volcanic
vent and the atmosphere. A large part of the acoustic wave energy at the vent-atmosphere
boundary is reflected inside the conduit as a function of the ka parameter defined by the
acoustic wave number k and the effective vent radius a [65]. At the vent surface, acoustic
pressure inside the conduit decreases drastically to equilibrate the atmospheric pressure,
and, for the conservation of the flux, the acoustic velocity increases almost two times for
a small value of ka. The propagation from inside the conduit to the atmosphere strongly
influences the radiation pattern and the amplitude of the acoustic wavefield transmitted in
the atmosphere. The directivity due to the vent radius and wave number for ka < 0.43 can
be neglected and the radiation pattern is isotropic outside the vent [65].

http://weather.uwyo.edu/upperair/sounding.html
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Exit Velocities and MER

As shown by Ulivieri et al. [62] and Ripepe et al. [16], the frequency content for lava
fountaining events at Mount Etna is typically below 1 Hz, as was the case of both the
events described here. Considering a vent radius ranging between 5 and 20 m (i.e., 5 m,
10 m, 13.5 m, 20 m), ka values are ranging between 0.09 and 0.36 (see [65]), hence below
0.43. This means that the acoustic signal can be used to calculate the volumetric flux inside
the conduit qi(t) considering a perfectly isotropic radiation pattern outside the vent and
an insertion loss caused by topography IL = 0, given that the ETN array position is in the
line-of-sight with the NSEC vent [65]:

qi(t) =
2πr

(1 + |R|)ρα10(
IL
20 )

t∫
0

∆P
(

t +
r
c

)
dt (6)

where α is the directivity at 0◦ being equal to 1, ∆P is the pressure signal (Pa), t is the time
(s), r is the distance between the acoustic source and the array (m), c is the speed of sound
of 345 m/s, ρ is the atmosphere density (kg/m3) and |R| is the acoustic reflectance that
ranges between 0.99 and 0.90 for our ka values (0.09–0.36). Finally, we can estimate the
infrasound acoustic velocity by dividing qi(t) by the cross-section area of the eruptive vent,
which needs to be constrained. We used the exit velocities retrieved from V2B signals to
constrain the best-suited vent radii to compute velocities from the acoustic signal. The
resulting best vent radius will also be used in the SFA (Equation (1)) for both the V2B and
MWR. In addition, we used infrasound velocity to determine the independent MER using
the SFA methodology [15,66].

2.6. Plume Height from Visible Camera

The monitoring network of the INGV-OE uses a set of visual cameras that record Etna’s
summit craters and their close environment in real-time. Images taken by these cameras
have been calibrated to allow direct measurements of plume heights depending on daily
weather forecast [20] and following isolines of heights above sea leveltitude derived from
the Trapani WMO atmosp (Figure 1b; [21,22]). In particular, we use a visible camera located
at Catania (ECV; Figure 1a) to evaluate plume height during an explosive event. Images are
recorded each 1 s and provide plume height estimates with an uncertainty of ±0.5 km [21].
The main limitations of this method are the strong influence of weather and light conditions,
e.g., the presence of clouds, and the incapacity to measure heights above 9 km (a.s.l.) or
when plumes are drifted outside the camera’s field of view during the period of 2011–2013.
In order to improve the visible monitoring system and extend its use to various plume
dispersal axes, a new camera was installed on the west flank of Mount Etna (i.e., Etna Bronte
High Definition camera, EBHD). This camera, thanks to its field of view and depending
on wind direction, allows a maximally visible determination of HT up to 15 km (a.s.l.)
(see Scollo et al. [22] for more details).

3. Results
3.1. Plume Height Estimates

As previously described, plume height can be independently determined at Etna
based on at least three different remote sensing systems that are complementary in terms
of detection limits and space-time resolution (Visible Camera, Satellite retrievals—MODIS
and SEVIRI, and X-Band radar—MWR) (see Figure 3).
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Figure 3. Plume height estimates on10 April 2011 (a) and 23 November 2013 (b) from X-band radar
(MWR, black line), MODIS at 12:30 UTC (green cross), SEVIRI (blue line), and ECV (red line). Red
dashed line corresponds to ECV measurements when the plume starts to leave the field of view. The
start and end time of the paroxysmal activity is derived from VOLDORAD 2B signal and indicated
by the black arrow. Error bars are also shown for all sensors.

Even though the determination of HT by the visual camera (ECV) was not possible
after 11:20 UTC due to the presence of meteorological clouds, continuous detection during
the whole 10 April 2011 paroxysm was possible with the MWR and SEVIRI (Figure 3a).
In addition, a punctual measurement obtained at 12:30 UTC using MODIS data is also
available. Heights obtained from ECV images (Figure 1b) are derived from 10:10 to
11:20 UTC [22,30]. Starting from 5 km a.s.l., HT increases rapidly and starts oscillating
between 8 and 9 km a.s.l. (red dashed line in Figure 3a) from 10:58 to 11:20 UTC. After
that time, the highest part of the plume leaves the camera field of view until the end of
the paroxysm. As derived from MWR and SEVIRI data, HT also increases at 09:30 UTC
from 1 km above NSEC to reach maximal altitudes of 8.9 ± 0.3 km a.s.l. as seen with the
MWR at 11:20 UTC, and 6.1 km a.s.l. at 12:15 UTC using SEVIRI. Despite offering data
only during the increase of the paroxysmal activity, ECV’s height estimates agree with
MWR heights as does the 7.9 km height a.s.l. retrieved with MODIS at 12:30 UTC. On
average, SEVIRI records display average HT that are 1–2 km lower than the MWR during
the paroxysmal activity. Nevertheless, both instruments present similar HT values after the
end of the paroxysm at 13:30 UTC with average values around 5.9 ± 0.4 km for MWR and
5.0 ± 0.6 km for SEVIRI until 15:15 UTC when HT starts to decrease.

HT on 23 November 2013 as detected by ECV started to increase from 09:15 up to
09:55 UTC to reach altitudes up to 9 ± 0.5 km a.s.l. (Figure 3b). HT derived by the MWR
and SEVIRI increased rapidly at 09:30 UTC up to similar top heights of 11.7 km a.s.l. at
10:10 UTC and 12.0 km a.s.l. at 10:07 UTC, respectively. The MWR and ECV-based HT
increase 5–10 min before satellite estimates. Over the same eruptive period between 09:30
and 10:30 UTC, mean HT derived from the MWR, ECV and SEVIRI are close with values of
8.2 ± 3.2, 7.4 ± 1.5, and 6.9 ± 3.4 km a.s.l., respectively. The X-band detection of the tephra
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plume ends at 10:40 UTC, ~20 min after the end of the paroxysm while visible and satellite
thermal data last up to 11:30 and 12:02 UTC, respectively.

3.2. Determination of Exit Velocity, TEM and MER
3.2.1. Mixture Exit Velocity from V2B and Infrasound

We determined the vertical velocity of the eruptive mixture above the vent as retrieved
from the Doppler radar V2B and infrasound measurements. These vertical velocities can
be considered as a first approximation of the source vexit that is used to compute MERSFA

(Equation (1)) as well as the velocity ventry at which the eruptive mixture enters radar beams
that are used to compute MERNSA (Equation (2)).

V2B and infrasound measurements result in a similar mean exit velocity when using
vent radii considered in previous studies for Etna (i.e., a radius of 10 m and 13.5 m [3,15,67]).
In particular, the mean exit velocity associated with V2B and infrasound is 43.7 ± 26.7 m/s
and 42.6± 18.8 m/s for the 10 April 2011 paroxysm, and 101.1± 63.1 and 129.2 ± 62.7 m/s,
respectively (Tables 1 and 2 and Figure 4). The values of exit velocities associated with the
infrasound are averaged between the calculation for 10 m and 13.5 m vent radius. Given
that neither of the two values provides a perfect match, we will use both vent radii to
compute the SFA-based MER hereafter.

Table 1. 10 April 2011 paroxysm eruptive source parameters (ESPs) retrieved for all methodologies (in case of multiple
strategies associated with individual sensors, mean values are indicated in bold). * duration from Calvari et al. [4]. ** Total
erupted mass (TEM) derived with the power law strategy (averaged for distal integration limits of 100 and 400 km from
vent). *** Mean duration from all microwave weather radar (MWR) and satellite approaches.

Mean Exit
Velocity (m/s) Max HT (km a.s.l.) Method Duration (min) TEM (kg) Averaged MER

(kg/s)

ECV / >9 ECV / / /

V2B 43.7 ± 26.7 /

SFA 250 5.8 × 109 2.8 ± 1.6 × 105

NSA 250 2.2 × 109 1.4 ± 1.2 × 105

Proxy 250 4.0 × 108 2.7 ± 3.5 × 104

MEAN 250 2.8 ± 2.8 × 109 1.5 ± 1.3 × 105

MWR / 8.9

SFA 210 1.2 × 109 9.3 ± 0.4 × 104

NSA 190 2.6 × 109 2.3 ± 1.7 × 105

TPA 420 4.7 × 109 1.9 ± 2.3 × 105

MCA 410 6.4 × 108 2.6 ± 2.4 × 104

MEAN 308 ± 124 2.3 ± 1.8 × 109 1.4 ± 0.9 × 105

Infrasound 42.6 ± 18.8 / SFA 273 2.9 × 109 2.0 ± 0.9 × 105

Ground-IR / / SFA 240 * 1.2 × 109 8.6 ± 2.5 × 104

SEVIRI / 6.1
TPA 315 6.0 × 108 2.7 ± 2.5 × 104

VPR-ASH 255 2.0 × 106 1.2 ± 0.9 × 102

VPR-ICE 370 4.9 × 107 2.1 ± 1.3 × 103

MODIS / 7.9
ASH 160 2.3 × 106 2.6 ± 3.1 × 102

ICE 170 1.4 × 107 1.7 ± 1.7 × 103

Deposit / /

Power-law ** 310 ± 94 *** 4.7 ± 2.3 × 107 2.5 ± 2.0 × 103

Weibull 1.3 × 107 0.7 × 103

Exponential 1.4 × 107 0.8 × 103

MEAN 2.5 ± 1.9 × 107 1.4 ± 1.1 × 103
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Table 2. 23 November 2013 paroxysm ESPs retrieved for all methodologies. * TEM derived with the power law strategy (averaged for
distal integration limits of 100 and 400 km from vent). ** TEM derived by Andronico et al. [27]. *** Mean duration from all the MWR
and satellite approaches.

Mean Exit
Velocity (m/s) Max HT (km a.s.l.) Method Signal

Duration (min) TEM (kg) Averaged MER
(kg/s)

ECV / >9 / / / /

V2B

53.8 ± 63.7
(07:00–10:30)
101.1 ± 63.1
(09:00–10:30)

/

SFA 193 4.2 × 109 3.4 ± 3.8 × 105

NSA 193 2.7 × 109 2.3 ± 3.5 × 105

Proxy 193 4.3 × 109 3.6 ± 8.3 × 105

MEAN 193 3.7 ± 0.9 × 109 3.1 ± 0.7 × 105

MWR / 11.7

SFA 40 3.5 × 109 1.5 ± 0.4 × 106

NSA 30 4.3 × 109 2.6 ± 2.2 × 106

TPA 80 6.4 × 109 1.3 ± 1.5 × 106

MCA 70 5.5 × 109 1.3 ± 1.5 × 106

MEAN 55 ± 24 4.9 ± 1.3 × 109 1.7 ± 0.6 × 106

Infrasound 129.2 ± 62.7
(09:00–10:30) / SFA 85 3.7 × 109 7.4 ± 3.7 × 105

Ground-IR / / SFA 130 5.8 × 109 7.5 ± 4.7 × 105

SEVIRI / 12.0
TPA 40 3.6 × 109 1.4 ± 1.8 × 106

VPR-ASH 120 1.3 × 107 1.6 ± 1.8 × 103

VPR-ICE 105 1.0 × 107 1.4 ± 1.3 × 103

Deposit / /

Power–Law *

69 ± 35 ***

1.4 ± 0.0 × 109 3.4 ± 1.7 × 105

Weibull ** 1.3 × 109 3.1 × 105

Exponential 1.2 × 109 2.9 × 105

MEAN 1.3 ± 0.1 × 109 3.1 ± 0.3 × 105
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Figure 4. Mixture exit velocities determined by onfrasound (black and blue lines) and L-band Doppler radar VOLDORAD
2B (V2B, orange and red lines) during (a) the 10 April 2011 and (b) the 23 November 2013 paroxysms. In particular, the
determination of the exit velocity with the infrasound is based on a vent diameter of 10 m (black line) and 13.5 m (green
line) as well as 20 m (blue line).

3.2.2. TEM and MER from Tephra-Fallout Deposit

The integration of the three empirical fits of the ground mass accumulation versus
square root of area contours of the 10 April 2011 event (Figure 5) results in values of TEMdep

of about 1.3 × 107, 1.4 × 107, and 4.7 ± 2.3 × 107 kg using the Weibull, exponential and
power-law fit, respectively (Table 1). While the exponential and the Weibull fit can be
integrated between zero and infinity, two integration limits have to be selected for the
power-law fit due to the associated asymptotic nature. In particular, the proximal limit
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is calculated as proposed by Bonadonna and Houghton [41], while, in order to character-
ize the associated uncertainty, the distal integration limits were set both at 100 km and
400 km where ground accumulation becomes negligible (i.e., between 10−3 and 10−4 kg/m2

based on the thinning trend of Figure 5). In fact, given that the power-law exponent is <2
(Figure 5), the resulting volume is sensitive to the distal integration limit but not to the
proximal one [41,68]. The TEMdep from the power-law fit is then averaged between the
values obtained with the two different distal integration limits (100 and 400 km). Given
the absence of proximal data (due to difficult access) and of distal data (due to most of the
deposit falling in the sea) (e.g., [26]), Weibull and exponential estimates must be considered
as minimal values [68] for this tephra deposit. As an example, Spanu et al. [69] have
shown for the 24 November 2006 paroxysm of Etna that a lack of sampling within the first
kilometers from the crater could lead to a loss of 30% of the TEM. In this context, even
though associated with the uncertainty of the integration limits, the power law fit might
provide a better estimate given that it can better predict the medial and distal gradual
thinning. We obtain a value of MERdep by dividing each TEMdep by a mean duration of
310 ± 94 min determined based on the MWR and satellite-based infrared (Table 1). Accord-
ingly, we found MERdep between 0.7 and 2.5 × 103 kg/s (average of 1.4 ± 1.1 × 103 kg/s)
(Table 1; Figure 6).
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Figure 5. Variation of mass/area as a function of the square root of associated contour areas from Figure 2 for the
10 April 2011 tephra deposit (a) and for the 23 November 2013 tephra deposit (data from Andronico et al. [27]) (b). Purple
dashed line, red line and blue line represent the best Weibull fit, exponential fits, and power-law fit. The power-law fit
equations are y = 1.11 x−1.55 in (a) and y = 408.14 x−2.49 in (b).

The ground accumulation variation obtained for the 23 November 2013 tephra-fallout deposit was fitted with two
exponential segments with a break in slope around 4 km as well as a Weibull and power-law function (Figure 5b).
TEMdep obtained by the Exponential, the Weibull, and the power-law fits (Figure 5b) are similar with values of 1.2 × 109,
1.3 × 109, and 1.4 ± 0.0 × 109 kg [27], respectively (Table 2). Here we fixed the distal integration of the power-law fit
at 180 and 450 km, using the criteria of negligible deposit as for the 10 April event. Finally, using an average duration
obtained from the SEVIRI and MWR approaches of 69 ± 35 min, we find MERdep between 2.9 and 3.4 × 105 kg/s with an
average of 3.1 ± 0.3 × 105 kg/s for the 23 November 2013 paroxysm. Please see the following sections for the details on
the sensor selection to derive the event duration.
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NSA (purple), and proxy method (red line) using V2B signal; MER values are averaged over 10 min. (b–e): SFA (blue), NSA
(purple), MCA (red) and TPA (black) methods using the MWR signal. (c–f): SFA MERs based on ground-based thermal data
(orange) and infrasound data (red). MER of the plume for ash and ice contents are respectively shown in black and light
blue lines for SEVIRI and dashed lines for MODIS. MERs based on satellite heights (TPA) are displayed in green. Vertical
dashed lines indicate the end of the lava fountain activity as derived from V2B. The deposit-derived MERdep is indicated by
the horizontal pink arrow (see Tables 1 and 2 for more details).

3.2.3. MER and TEM from Remote Sensing

It is important to note that sensor-derived estimates of MER and TEM presented
hereafter are computed over a duration that is based on the corresponding sensor signal
(see Tables 1 and 2). V2B MER methods are associated with different results: the velocity-
derived NSA and SFA estimates appear relatively close, with mean values respectively of
1.4 and 2.8 × 105 kg/s, whereas the MER proxy derived from both power and velocity
shows a significantly larger dynamics and remains one order of magnitude below for this
event with an average MER of 2.7 × 104 kg/s (Figure 6a and Table 1). Altogether, MER
values derived from all V2B strategies result in an average of 1.5 ± 1.3 × 105 kg/s. It is
important to note that the MER associated with V2B was averaged over 10 min in order to
better compare it with the MWR results.

Time series of MER from MWR start at 09:30 UTC and show a concomitant increase
with V2B estimates except for MWR-SFA values that show a constant value for the whole
event (Figure 6b). MWR average values of the MER range between 2.6 ± 2.4 × 104 and
2.3± 1.7× 105 kg/s as based on the MCA and TPA, respectively. In between, the respective
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average MER from the SFA and TPA are equal to 9.3 ± 0.4 × 104 and 1.9 ± 2.3 × 105 kg/s.
In total, all MWR-MER methods provide an average MER of 1.4 ± 0.9 × 105 kg/s. SFA-
MER derived from ground-based thermal is similar to SFA-MER associated with MWR
data and they are both relatively close to average values (Figure 6b,c; Table 1).

Infrasound MER values present small variations with time, with an average value of
2.0 ± 0.9 × 105 kg/s. Figure 6c also highlights two trends for satellite-based MER data
from SEVIRI and MODIS satellites that suggest a high amount of ice in the detected tephra
plume and cloud. On average, MER values corresponding to the ash content are 7 and
18 times lower than ice in MODIS and SEVIRI time series, respectively (Table 1). In-
terestingly, MER values based on SEVIRI observations of HT (Figure 3) vary with time
with a maximal value of 7.7 × 104 kg/s at 12:00 UTC (Figure 6c) and a mean value of
2.7 ± 2.5 × 104 kg/s, similar to mean MERs from V2B proxy and MWR NSA and MCA
methods (Table 1).

All MERs from V2B are very close also for the 23 November 2013 paroxysm
(Table 2). MERs from the NSA and SFA follow the same trend (Figure 6d) with mean
values of 2.3 ± 3.5 × 105 and 3.5 ± 3.7 × 105 kg/s, respectively. Proxy-derived MERs
remain lower than NSA and SFA MERs at the beginning of the event, following a similar
trend until 09:20 UTC. It then strongly increases as a consequence of increasing echo power
from the fountaining ejecta. Despite the fact that the average proxy-derived MER is similar
to the SFA and NSA estimates, proxy MERs remain higher than the NSA and SFA estimates
with a maximum value of 3.1 ± 1.6 × 106 kg/s during the paroxysm climactic phase from
09:45 to 10:15 UTC (Figure 6d).

Concerning MWR estimates, the eruptive signal started from 09:30 UTC when exit
velocities and HT estimates increased significantly (Figures 3 and 4) and lasted up to
10:40 UTC for the TPA and MCA methods, whereas the SFA and NSA estimates lasted
30–40 min up to 10:10 UTC (Figure 6e). As shown by Marzano et al. [15], all MER meth-
ods using MWR data provide very similar estimates during the climactic phase of the
23 November 2013 paroxysm with maximal MER being comprised between 1.9 × 106 kg/s
(SFA) and 4.1 × 106 kg/s (NSA) (Figure 6e).

The SFA method based on infrared data provide MERs that are comprised between
2.8 × 104 kg/s and 1.5 × 106 kg/s with a signal lasting 130 min from 08:20 and
10:20 UTC (Figure 6f and Table 2). Infrasound-based MERs using the SFA are close to
ground-based infrared estimates and show a maximal value of 1.8 × 106 kg/s. As for the
10 April 2011 event, satellite data present two trends for both plume/cloud ice and ash
content whose values are, however, very close with a mean of 1.4 × 103 vs 1.6 × 103 kg/s
(Table 2 and Figure 6f). Based on HT derived by satellite over 40 min, i.e., when HT becomes
higher than the vent height of 3.2 km (Figure 3b), TPA-based MER are comprised between
2.1 × 103 kg/s at 09:47 and 4.7 × 106 at 10:07 UTC, respectively. The mean MER from HT
measured by satellite is also very similar to the MWR mean value (Table 2).

In terms of TEMs, all methods show very different trends of time-integrated erupted
mass for the 10 April 2011 event (Figure 7a). Final values, which correspond to TEMs, con-
verge to a value around 109 kg (between 6.4 × 108 kg for MWR MCA and
5.8 × 109 kg for V2B SFA, respectively), whereas deposit and satellite ash content estimates
are much lower (between 2.5 ± 1.9 × 107 and 2.0 × 106 kg, respectively)
(Figure 7a and Table 1). In general, SFA, NSA, and TPA-derived ESPs display higher
TEM values than those retrieved with proxy and MCA for all sensors (see Table 1 and
V2B-TEMs in Figure 7a). The arithmetic mean associated with all methodologies for each
sensor is between 1.2 and 2.8 × 109 kg for V2B, MWR, infrasound, and ground-based
thermal data (Table 1). For satellite mass data, two trends are still shown for both contents
in ash and ice with TEMs respectively ranging between 2.0–49.0 × 106 kg for SEVIRI and
2.3–14.1 × 106 kg for MODIS data (Figure 7a; Table 1).
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Figure 7. Time-integrated erupted mass detected by all remote sensors for the 10 April 2011 (a) and 23 November 2013 (b)
paroxysms. The vertical black dashed line indicates the end of the lava fountain activity as derived from V2B. Note that
each final value of time-integrated mass corresponds to each sensor TEM.

The TEMs observed for the 23 November 2013 paroxysm by V2B, MWR, infrasound
and thermal camera span less than one order of magnitude between 2.7 × 109 kg (V2B-
NSA) and 5.8 × 109 kg (ground-based infrared). Interestingly, all cumulative trends
from infrasound, ground-based infrared and both Doppler radars are converging during
the pre-climax phase toward a relatively narrow range of TEMs between 2.7 × 109 and
6.4 × 109 kg (Figure 7b and Table 2). As observed for the 10 April 2011 (Figure 7a), TEMs
estimated from the satellite-derived plume/cloud, ice and ash content are lower than
all other methods with very similar TEMs of 1.0–1.3 × 107 kg (Table 2). Nevertheless,
TPA-based TEM from SEVIRI is in the same order of magnitude as all other methods with
a value of 3.6 × 109 kg.

For both eruptive events and for all ground-based remote sensors, 0 to 10% of the TEM
is emitted after the end of the fountaining activity as derived by V2B [30] and ground-based
infrared [4] (Figure 7). While satellite-based TEMs are also reached by the end of the lava
fountaining on 23 November 2013 (Figure 7b), 27 to 53% of the ash content and TPA-based
TEMs, respectively, is detected after the end of the paroxysmal activity on 10 April 2011
(Figure 7a).
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3.3. Total Grain-Size Distributions
3.3.1. Combination of WDGSD and GSDsat

The WDGSD derived by applying the Voronoi Tessellation method on the deposit
data [41] is unimodal and well sorted with a sorting coefficient of 1.41 and an MdΦ [70] of
0.82 Φ, i.e., 0.57 mm (Figure 8a).
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Figure 8. (a) Whole deposit grain-size distribution (WDGSD) of the 10 April 2011 paroxysm. (b) VPR-derived GSDsat

from SEVIRI (blue) and MODIS (orange) data. (c) Cumulative total grain-size distribution (TGSD) of the 10 April 2011
paroxysm; grey and red lines correspond to WDGSD-SEVIRI TGSDs obtained by considering a mass ratio of 4.2% and
8.1% between satellite and deposit TEMs, respectively (see main text for details). The purple line corresponds to the near
real-time MWR-SEVIRI TGSD (see main text for details). The purple and red shaded areas correspond to the size detection
limit of the MWR and SEVIRI, respectively. (d–f) Same results obtained for the 23 November 2013 paroxysm. The WDGSD
in (d) is from Poret et al. [31].

Both SEVIRI and MODIS data can be used to provide a GSDsat by using the VPR
algorithm (Figure 8b). Such distributions are unimodal and very well sorted, i.e., sorting
of 1.0 and 0.8, respectively, and consider that all detected material is under 20 microns
of diameter; SEVIRI and MODIS GSDs display MdΦ values of 8.3 Φ (0.003 mm) and
6.9 Φ (0.008 mm), respectively. To combine deposit and satellite data, we choose the SEVIRI
GSDsat that better describes the temporal variations of sizes in the detected plume/cloud
instead of the MODIS punctual GSDsat, hardly representative of the whole event and
only available for the 10 April event. In particular, we combined all GSDs from the
tephra-fallout deposit and SEVIRI based on their relative TEM proportion (see for example
Bonadonna et al. [71]). In order to take into account the uncertainty associated with the
determination of TEM, here we consider both the power-law estimate only and the mean
of all integration approaches (power-law, Weibull, and exponential), i.e., 4.2 and 8.1%,
respectively. Both resulting TGSDs are bimodal (Figure 8c) and consider both the material
that felt on the ground and the very fine part of the erupted material detected by satellite,
which ranges between 1 and 20 µm.
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The WDGSD and GSDsat of the 23 November 2013 paroxysm are shown in
Figure 8d,e. The WDGSD, which was obtained by Poret et al. [31], is unimodal,
coarse-grained with an MdΦ of –3.4 Φ (10 mm; lapilli-sized), and well sorted. This
WDGSD is particularly depleted in fine ash with no material below 63 microns.
SEVIRI GSDsat integrated over the whole event duration is also unimodal with an MdΦ of
7.7 Φ (0.005 mm) and sorting of 1.2. Given that the estimates of TEM based on the three
integration methods for the 23 November 2013 event are all very similar, WDSGD and
GSDsat were combined (see TGSD in Figure 8f) based on an average value of the three
estimates (1.3 ± 0.1 × 109 kg; Table 2) resulting in a mass ratio of 1.2% with the ash TEM
obtained by SEVIRI (1.3 × 107 kg) (Table 2).

3.3.2. Combination of the GSDMWR and GSDsat

Following the same methodology as described above, we combined the GSDMWR
and the SEVIRI GSDsat (Figure 8c,d). Accordingly, we used the mass ratio between
the arithmetic mean of MWR-based NSA and MCA TEMs (i.e., 1.6 ± 1.4 × 109 kg and
4.9 ± 0.8 × 109 kg, respectively for both events) and the satellite-based ash mass retrieved
with the VPR (Tables 1 and 2). A very small mass ratio of 0.12% and 0.27% between SEVIRI
and MWR was found for the 10 April and the 23 November paroxysms, respectively. It is
important to note that, given these very small mass ratios, the GSDMWR and the combined
MWR-SEVIRI TGSD were very similar for both events in Figure 8c,f. Interestingly, the
MWR-SEVIRI TGSD was similar to the WDGSD-SEVIRI TGSD for the 10 April 2011 event
with an MdΦ of 1.0 (0.5 mm) and sorting of 0.87 (Figure 8c). However, in the case of the
November 2013 event, the MWR-SEVIRI TGSD with an MdΦ of −0.4 (1.3 mm) was finer
than the WDGSD-SEVIRI TGSD having an MdΦ of −3.4 (10.6 mm) (Figure 8f).

4. Discussion
4.1. Determination of Plume Height

HT is one of the keys and most common ESPs to be determined in real-time. In fact,
active explosive volcanoes are generally monitored with visible cameras from which HT is
derived when the wind velocity is known [21,22], with satellite data following the dark
pixel procedure [51] and/or with radar data [72]. For tephra forecasting and modeling
purposes, HT is an important input parameter [68,73,74] as it defines the spreading height
of the volcanic cloud and strongly influences its dispersal axis and impact area [74,75]
(and references therein). At Etna, HT is typically obtained based on visible camera [21,22],
satellite-based observations [7,8,39,49] (and references therein) and MWR (X-band) radar
detection [13–15]. However, as shown during the 10 April 2011 and the 23 November 2013
paroxysms, the accuracy of these three techniques depends on various conditions (Table 2).

Indeed, plume height estimates at Etna based on the camera located in Catania
(ECV in Figure 1) are restricted to 9 km (a.s.l.), day light, no cloudy conditions (see
Figure 1a; Figure 3a), and to the camera field of view [21,22]. ECV camera cannot track HT
either when the plume dispersal axis is parallel to the camera line of sight. To overcome
these limitations, a new camera was installed on the west flank of Etna volcano (i.e., Etna
Bronte high definition camera, EBHD in Table 3 and Scollo et al. [22]) and will allow a
maximally visible determination of HT up to 15 km (a.s.l.) (Table 2), under day light and no
cloudy conditions.

Thanks to its 3-D scanning capacity at different elevation angles, the MWR covers an
area of 160 km wide and 20 km high [13]. Mount Etna being at ~30 km from the radar
site (Figure 1a; [13–15]), the MWR is able to detect ash plumes with typical southeastward
dispersion up to maximum HT of ~12 km (a.s.l.), using the highest beam elevation angle.
In addition, MWR data are exploitable for all light (day/night) and weather conditions
(Table 3). Indeed, the dual-polarization capacity of the MWR allows us to discriminate
ash particles from hydrometeors, which can affect the radar signature of a detected tephra
plume [10,45,76].
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Finally, we have shown that satellite-based HT estimates are generally lower
(Figure 3a) or delayed (Figure 3b) in comparison with those from the MWR and ECV.
In the case of the 10 April 2011 weak paroxysm, the detected ash plume/cloud is not
opaque and this lead to underestimating HT when the dark pixel procedure [7,8,51,56]
is applied as already observed in Scollo et al. [22]. Similarly, the delayed increase in
HT (Figure 3b) might represent the duration taken by the plume to become sufficiently
opaque, i.e., allowing an accurate estimate of its height using the Dark pixel procedure (see
also [7,8,22]). This observation, linked to the overall determination of MER from satellite,
might suggest that the dark pixel procedure becomes accurate when the ash emission is
sufficiently sustained, as observed during climactic phases of paroxysms at Etna.

4.2. Insights into Exit Velocity Measurements

The exit velocity is a critical parameter to determine MER [4,13,15,30,66] and to con-
strain eruptive column dynamics [77–81]. Direct evaluation of exit velocities at Etna
comes from the fixed-pointing near-source Doppler radar V2B at very high time resolu-
tion [12,30]. In addition, infrasound sensors, a more common tool for monitoring active
volcanoes [62,63] (and references therein), can also provide exit velocities when vent charac-
teristics are known [65]. In fact, the determination of the exit velocity based on infrasound
data requires the infrasonic type of source to be constrained (e.g., dipole, quadrupole),
which is still under investigation [64,66]. As a result, the V2B values of exit velocity were
used in this paper to validate the vent radius used in literature for NSEC of Etna volcano
(i.e., 10 m and 13.5 m [4,15]) to be used in the calculation of MER with the SFA strategies.
V2B-derived exit velocities are recorded 100–200 m above the source vent and describe the
ascent of coarse lapilli and block/bombs forming the lava fountain, whereas infrasound
velocities are likely to describe the gas exit velocity [65]. Even though in the jet region
gas and tephra are assumed to move at the same velocity (as the tephra is carried by the
expanding gas), some of the largest blocks and bombs as seen by the V2B might be slower
resulting in an underestimation of the mixture velocity. It is interesting to note that these
two events are separated by a long time period including many eruptions and a significant
cone shape modification [35,36]. This suggests that a 10–13.5 m range is reasonable to
describe the NSEC radius for paroxysms at Etna during the present cycle of activity.

4.3. ESPs of Weak and Strong Paroxysms at Etna

Paroxysms at Etna are generally composed of two main components, i.e., a lava
fountain and a tephra plume which is mostly fed by the lava fountain [4,30,35,81]. The
contribution of each component to the TEM, MER, and TGSD of the cumulative event can
be explored using different sensors.

4.3.1. Multi-Strategy TGSD Determination

The TGSD is certainly the most challenging parameter to be retrieved in near real-
time [22,82] as all remote sensors are sensitive to various tephra size ranges whose limits are
difficult to constrain [83] or need to be modeled (radar-based GSDs in Figure 8c,f) [15,45,84].
Satellite thermal-infrared retrievals are sensitive to very fine ash (<20 µm) within the top
ash cloud layers, whereas MWR retrievals are mostly sensitive to tephra sizes from fine
ash (>25 µm, [7]) to lapilli (up to 64 mm, [45]) within the plume.

Here we show a first attempt to provide a near-real-time TGSD by combining GSDMWR
and GSDsat from SEVIRI (Figure 8). In fact, WDGSD and SEVIRI GSDsat had already been
combined in the past with good results for TGSD (e.g., [31]), which, however, cannot
be provided in near real-time. It is important to mention also that an MWR-SEVIRI
TGSD not only can be produced in near real-time, but it can also overcome some of the
limitations related to tephra-deposit sampling. In fact, it is important to bear in mind a
few shortcomings of deposit sampling at Etna. First, the very proximal fraction deposited
<0.5 km from the vent and contributing to building the eruptive cone, i.e., the lava fountain
tephra deposit, is never sampled [35,36,81]. Second, the proximal fraction deposited
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<5 km and corresponding to the coarsest part of the tephra plume GSD is also rarely
sampled because of access difficulties (i.e., presence of La Valle del Bove horseshoe-shaped
depression) and problems in discriminating individual deposits in periods of frequent
activity [26,69]. This is also the case for the 10 April 2011 event for which the first sample
was taken at 7.2 km from the vent (Figure 2). Finally, due to prevailing wind directions
heading towards the East at Etna, fountain-fed tephra plumes are frequently drifted above
the Tyrrhenian Sea and the distal part of tephra fallout deposits is lost (see examples in
Figures 1 and 2). Accordingly, most of the paroxysm-related tephra deposits can only be
sampled up to about 30 km (i.e., the coastline) (Figures 1a and 2) except for when the
emitted plume is directed Southwardly (e.g., 12 January 2011 paroxysm; [26]). In contrast,
GSDMWR can provide information from the vent down to about 80 km from the vent
depending on the size of the paroxysm.

The MWR-SEVIRI TGSD shows a promising agreement with the WDGSD-SEVIRI
TGSD even though some caveats have to be considered. First, the ratio of the TEM
associated with the different strategies used (i.e., tephra-fallout deposit and SEVIRI or
MWR and SEVIRI) has a strong impact on the final TGSD. As an example, the large
difference in TEM associated with the MWR and satellite retrievals resulted in a negligible
contribution of the SEVIRI GSDsat to the final TGSD for both events. However, even if the
mass contribution of the very fine material below 20 microns detected by SEVIRI represents
less than 0.5% of the total amount detected by MWR for both the November 2013 and the
April 2011 paroxysms, the GSDsat is essential for the characterization of the ash transport in
the atmosphere using VATDM [31]. Second, while the GSDMWR shows a good agreement
with the WDGSD (whole deposit GSD) for the 10 April event, it is considerably finer with
respect to the WDGSD for the 23 November event. This is mostly related to the processing
of radar data. In fact, even though the MWR actually sees particles also above 8 mm, these
do not represent a large portion in number, and, therefore, they disappear in the final
calculation of GSD in wt%. In addition, instead of considering several size classes in the
VARR as in Mereu et al. [46] and Marzano et al. [15], we used a wider single size class (from
0.008 to 64 mm) to better combine it with SEVIRI GSD data and better compare it with the
WDGSD. This new procedure simplifies the data treatment, but it loses information at the
tail of the distribution (i.e., particles >8 mm and <63 µm).

To conclude, both the MWR-SEVIRI TGSD and the WDGSD-SEVIRI TGSD provide
important insights. The first one can be derived in near real-time and can potentially
combine information on both lapilli and ash-sized particles including the very fine ash
detected from SEVIRI in all weather conditions and regardless of the coastline. The second
one can provide fundamental information to help better calibrate the procedure to derive
the MWR-SEVIRI TGSD as well as to run VATDMs of future eruptions of similar intensity
when the near real-time TGSD is not available. It is important to remember that the
derivation of TEM with the different sensors/strategies is crucial to the derivation of both
TGSDs in order to best combine the different contributions.

4.3.2. The Role of Signal Duration in MER and TEM Determination

As stated in Section 3.2.3., we computed all MERs based on individual sensor signal
duration. In fact, each sensor has its own signal duration depending on its time resolution,
on which portion of the lava fountain, plume, and/or cloud it records data for and/or
on what tephra size it is the most sensitive to. The duration variability observed in
Tables 1 and 2 is mostly due to the fact that the different sensors detect different phases of
the eruption [5,35,85]. Three typical main phases can be detected for Etna paroxysms, as
discussed below.

The first paroxysmal phase starts with lava fountaining (Phase I in Table 3) and is
captured by a ground-based infrared camera and V2B that point directly at the area above
the vent. This unstable activity produces also infrasonic waves in the conduit and at the
vent that are well captured by the infrasonic array [62] and from which an early warning
system has been developed [16]. The tephra emission during this phase is typically weak
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(mostly related to the building of the proximal cone) and is associated with low HT. This is
why V2B, infrasound, and ground-based infrared provide eruptive signal before the other
systems (i.e., 20 min earlier on 10 April and 60–120 min earlier on 23 November), whose
signal is based on tephra plume emission (e.g., satellite and visible camera as well as, to
some extent, MWR depending on its lowest scan elevation). It is important to note that
Phase I is typically preceded by mild-Strombolian activity, lasting several hours to days
before the start of Etna paroxysms [16,35,62]. Such activity does not induce significant
tephra emission and is mostly recorded by infrasound only.

Table 3. Summary of all ESPs that can be obtained at Etna. Blue cells: direct measurements; Green cells: derived measurements;
Orange cells: measurements needing additional models; Grey cells: parameter not provided. See main text for the description of Phase
I, II, and III. * with the methods of Carey and Spark [86], Rossi et al. [87], and Bonadonna and Costa [42].

Sensor/Method
Time

Resolution
(s)

Event Duration Plume Height HT
Total Erupted

Mass TEM
Mass Eruption

Rate MER
Total Grain-Size

Distribution

L-band Doppler
radar V2B 0.2 Phase I + II

Calibration based
on HT vs MER

laws

Based on MER
and duration

SFA, NSA,
PROXY

Based on VARR
model

Single value of Dn;
Detection of small

lapilli to
bomb/blocks (Lava

fountain; Phase I
and II)

X-band Doppler
radar MWR 600 Phase II + III

HT ~12 km (a.s.l.)
for plumes
dispersed

southeastwardly

Based on MER
and duration

SFA, NSA, MCA,
TPA

GSDMWR based on
VARR model;

Detection of fine
ash to lapilli (Phase

II and III).

Ground-based
infrared 60

Phase I + II
(no meteorological

clouds)

Based on MER
and duration SFA

Satellite-based
infrared/visible

(SEVIRI,
MODIS)

900
Phase II + III

(no meteorological
clouds)

Based on
atmospheric
temperature

profile

Based on MER
and duration

Based on Particle
Re and AOD, TPA

GSDsat
Resolved for

particles ≤20 µm
(i.e., 5.5 Φ) (Phase II

and III)

Infrasound 60 Phase I + II Based on HT vs
MER laws

Based on MER
and duration SFA

Visible camera 30–60
Phase II + III

(no meteorological
clouds)

ECV: HT <9 km
(a.s.l.)
EBHD:

HT <15 km (a.s.l.)
(requires day
light and no

cloudy
conditions)

Based on MER
and duration

Based on HT vs
MER laws

Tephra-fallout
deposit

after the
end of the
eruption

Based on MdΦ

and/or largest
clasts data *

Integration of
best fit of

mass/area vs.
sqrt(area) trends

(Exponential,
Power-Law,

Weibull)

Based on TEM
and duration
(Phase II + III
especially if

sampled >0.5 km
from the vent)

WDGSD
Potentially whole
size range from
very fine ash to

block and bombs;
limited to coastline
(typically <30 km

from vent
depending on

plume dispersal)

The second phase (Phase II in Table 3) is characterized by the emission of a sustained
lava fountain-fed tephra plume. While some paroxysmal events present phases II associated
with low eruptive intensities, e.g., the 10 April 2011 event, others are associated with plumes
that can reach heights of 12–17 km above sea levels, such as the 23 November 2013 and
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the 3–5 December 2015 paroxysms [6,8,15,30,33]. This phase is well detected by all sensors
including visual cameras, the MWR, and satellite-based infrared (Figure 6).

The third phase (Phase III in Table 3) represents the waning phase of the paroxysm [35].
While the lava fountain stops, the tephra plume and cloud emitted in Phase II are still
expanding in the atmosphere. Phase III is well captured by the MWR (mostly TPA and
MCA) and satellite but not by V2B, infrasound, and infrared sensors. This is the reason
why, MWR and satellite signals last longer after the end of the fountaining activity, i.e.,
between 20 min and <2 h in both paroxysms presented herein (Figures 6 and 7).

Given that the duration of the different sensor signals is associated with different
phases of the eruption, we strongly suggest calculating MER based on TEM and duration
associated with the same sensor. We can also conclude that V2B, infrasound array, infrared
camera, and MWR can provide information on the duration of the sustained phases of
the paroxysm (i.e., Phases I and II) (Figure 7a,b). In contrast, thermal-infrared satellite
and MWR signal durations are related to the presence of a tephra plume and cloud in the
atmosphere, including those associated with very fine ash (i.e., Phase II and III). Moreover,
most of the paroxysm TEM associated with the tephra-fallout deposit (Tables 1 and 2),
is likely to be released during Phases II and III (Figure 7 and Section 3.2.3). This is why
we computed deposit-based MERs using the mean signal duration as provided by MWR
and satellite.

4.3.3. MER and TEM

As shown in our result section, a variety of sensors and associated strategies exist at
Etna that can provide information on both the MER and TEM resulting in a large spread of
values, especially for the 10 April 2011 event. The spread is mostly due to the fact that the
different sensors and strategies record the 3 different phases of the paroxysm described in
the previous section, and, therefore, are complementary (Table 3).

The methods that best record the tephra-plume activity (i.e., mainly during Phase
II and III in Table 3) are the MWR-based MCA, the TPA (associated with all sensors),
and the V2B-based proxy method (based on the Degruyter and Bonadonna [48] equation
and valid for phase II; see Section 4.3.2). V2B-based proxy and MWR-based MCA meth-
ods present very similar TEMs for both paroxysms with values between 4.0 × 108 and
4.6 × 108 for the 2011 event, respectively (Table 1), against 4.6 × 109 and 5.5 × 109 kg
for the 2013 event (Table 2). Over the same period of detection of the MWR signal, i.e.,
09:30–10:30 UTC, V2B-based proxy MER is equal to 1.2 ± 1.2 × 106 kg on average. This
means that the MER-based MCA, V2B-based proxy, and satellite-based TPA MERs are
similar for both the weak and strong paroxysms analyzed herein. In addition, these three
methods present similar values to the MWR-based TPA MER for the strong 23 November
paroxysm. However, they are one order of magnitude lower for the weak 10 April parox-
ysm. It is important to note that satellite-based HT (from which satellite-based TPA MERs
are derived) is significantly lower than HT measured from the ECV, MWR, and MODIS
for the 10 April event (Figure 3a). It is well-known that plume heights retrieved from the
dark pixel procedure could be underestimated in the case of weak and non-sustained ash
emission (see Section 4.1). Hence, the fact that both the MWR MCA and V2B Proxy MERs
are similar to satellite-based TPA values in the case of the weak paroxysm suggests that
they might also underestimate the MER during weak eruptive activity.

All sensor TEMs obtained using the SFA are relatively close, regardless of the event
duration, with values between 1.2 × 109 and 5.8 × 109 kg for the 10 April 2011 against
3.2 × 109 and 5.8 × 109 kg for the 23 November 2013 paroxysm (Tables 1 and 2). In fact,
SFA estimates are not very different between both weak and strong paroxysms. This is due
to the fact that the exit velocity, on which the SFA strongly depends, is not the most varying
parameter among all paroxysms. Indeed, over 35 paroxysms out of 48 paroxysms including
a climactic phase observed by V2B between 2011 and 2015 at Etna [30], the overall mean
exit velocity was equal to 125.0 m/s with a standard deviation of ± 30%. Contrastingly,
the mean proxy-derived TEM was equal to 1.21 × 109 kg with a standard deviation of
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±126%. This suggests that SFA estimates do not capture the real variability of intensity
that exists between weak and strong paroxysms. Hence, the MER mostly based on exit
velocities obtained by V2B, MWR, infrasound, and infrared might be overestimated during
periods of weak activity and underestimated during intense periods, e.g., climactic phases.
To better describe the variability of paroxysm intensities, approaches based on parameters
related to a quantity of tephra, e.g., echo power of V2B or MWR reflectivities, should be
preferred to SFA.

Regarding MWR-based and V2B-based NSA, all TEMs are similar to SFA estimates
among both events (Table 1), except for the MWR-NSA TEM of the 2011 case which is up
to one order of magnitude less than the other values. Indeed, NSA estimates are made by
considering a given range of tephra for each radar, based on the VARR model outputs (see
Section 2.2.1.; [10,15,46]). Although the dual-polarimetric capacity of the MWR allows us to
model the GSD of detected tephra (Figure 8; see [46] and references therein), the size range
detected by V2B inside the fountains, likely small lapilli, remains unknown. Therefore,
for all paroxysms, we assume the same size range of 8 × 10−4 to 26.1 cm to determine
tephra concentrations and reflectivity-weighted mean diameters from V2B (Equations (3)
and (4)). Similar to exit velocities in the SFA, the upper size limit might tend to reduce
the variability of the V2B signal between weak and strong paroxysms. This is the reason
why, unlike V2B-based NSA estimates, MWR-based mass parameters using NSA present
large differences between the weak 2011 event and the strong 2013 event, similarly to MCA
values (Tables 1 and 2). Hence, without any further constraints on tephra sizes detected by
V2B, SFA and Proxy methods should be preferred for V2B to NSA estimates.

Overall, it seems that all ground-based techniques capture very well the eruptive
activity that occurs during the fountain-fed tephra plume activity (Phase II). The fact that
most of the TEM is likely to be released during this phase (e.g., Figure 7 and [30]) induces
that all masses retrieved by the ground-based sensors, hence excluding satellite and deposit
data, are relatively close with mean values of 2.3 ± 1.7 × 109 and 4.5 ± 1.2 × 109 kg for
the 10 April and the 23 November paroxysms, respectively. On the contrary, MER values
are different and depend on the capacity of each sensor to monitor, in addition to phase II,
either phase I (i.e., V2B, infrasound, ground-based infrared) or phase III (i.e., MWR and
SEVIRI) (see Table 3).

TEM and MER based on tephra-fallout deposit analyses are one to two orders of
magnitude less than all other ground-based techniques for the 10 April 2011 event but
display similar values for the 23 November 2013 (Tables 1 and 2). As already mentioned,
both tephra-fallout deposits were not sampled over their full extent, either in proximal nor
distal areas. The power-law fits of tephra deposits associated with Etna paroxysms should
be typically >2 as they are representative of small-to-moderate eruptions, as it is, in fact,
the case for the 23 November event [68]. The power-law exponent of the 10 April event
is <2 because of poor deposit exposure, and, therefore, the associated volume should be
considered as a minimum value [68].

Satellite-based mass values represent the very fine fraction below 20 µm erupted
during both paroxysms. However, if particles coarser than 20 µm are present in the
detected plume/cloud, their thermal signature would be the same as that of particles of
20 µm [50,51,83]. This could lead to an underestimation of TEM in the case of coarse ash in
the plume/cloud. In addition, it is important to note that when ice is present in a volcanic
cloud, as was the case for both paroxysms (see ice contents in Figure 6c,f and Tables 1 and 2),
the mass of ash retrieved from satellite-based infrared could also be underestimated [29,53].
Indeed, water and ice particles in the detected clouds have been shown to significantly
affect the BTD and VPR procedures [7,29,53] (and references therein) and might reduce
the signature of ash particles in satellite images. Taking into account the aforementioned
observations, satellite-based mass estimates should be considered as minimum values for
both paroxysms.
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5. Conclusions

Near real-time determination of ESPs is key to the initialization of VATDMs used for
near real-time forecasting of tephra dispersal and sedimentation. The comparison we made
in this study between the weak 10 April 2011 and the strong 23 November 2013 paroxysms
at Etna has helped to better interpret the results associated with existing approaches used
to compute ESPs based on a variety of monitoring sensors (see Table 3 for a summary). In
particular, this study suggests that:

(1) eruption duration, a critical parameter to convert the TEM in the MER and vice versa,
is different among all sensors analyzed because it is associated with different phases
of Etna’s paroxysms. V2B, infrared, and infrasound signals correspond to the starting
and sustained activity of the paroxysm (Phase I, i.e., lava fountaining activity, and
Phase II, i.e., lava fountain-fed tephra plume activity). In contrast, the MWR and
satellite signals are associated with both Phase II and the final waning phase (Phase
III) related to the subsequent expansion of plume and cloud in the atmosphere with
little or no tephra emission from the source vent. As a result, the MER should be
derived based on the TEM and duration associated with the same sensor. In the
case of TEM derived from the tephra-fallout deposit, the duration used to calculate
MERs should be that associated with Phase II and III (i.e., associated with MWR and
satellite signals);

(2) the three techniques currently used at Etna for the near real-time determination of
HT (visible camera, MWR, and satellite-based thermal-infrared observations) operate
at various time resolutions (i.e., 1 min to 15 min). A critical application of the three
techniques, including the use of visible cameras at different locations [22], allows us to
assess the best value of average HT as well as to evaluate the uncertainties associated
with each remote sensor. In addition, it appears that satellite-based HT tend to be
underestimated during weak and unstable paroxysmal activity;

(3) exit velocities from V2B can be used in combination with exit velocities from infra-
sound to better constrain the vent radius used for MER calculations, based on the
SFA. For Etna, a range of 10–13.5 m was found as the best estimate of the NSEC
radius. A combination of V2B and infrared camera signal with the existing early
warning system based on infrasonic data at Etna [16] has also the potential to better
characterize the MER in real-time at the beginning of the paroxysmal activity, i.e.,
Phase I;

(4) MER approaches are based on various parameters, e.g., radar echoes, exit veloci-
ties, or HT, and their accuracy strongly depends on the eruption intensity. Overall,
approaches based on HT (e.g., SEVIRI-TPA, MWR-TPA) or signals proportional to
the quantity of detected tephra (e.g., MWR-NSA, MWR-MCA, V2B-NSA) are better
suited for computing MER in a large set of eruptive intensities. As an example, MER
can be constrained at various time-resolution from 0.2 s (V2B) to 10 min (MWR) for a
wide range of eruptive intensities and for all weather and light conditions. Instead,
SFA methods (e.g., MWR-SFA, V2B-SFA, Infrasound-SFA, Ground-IR-SFA), based on
exit velocities that do not vary significantly among paroxysms, might overestimate or
underestimate the MER and TEM for weak and strong paroxysms, respectively;

(5) GSDMWR can be combined with GSDsat to provide a TGSD in near real-time, which is
strongly affected by the determination of the relative TEMs. GSDMWR is representative
of both the material contributing to the tephra-fallout deposit (contributing to the
WDGSD) and to material that typically falls in the sea beyond the coastline (about
20 km from the vent in the case of Etna volcano). Nonetheless, a better constrain of
the TEM associated with the two sensors and of the tails of the GSDs is required for
operational use;

(6) the combination of the WDGSD and GSDsat. can be used to validate the near real-time
strategy described in the previous point as well as a proxy for near real-time tephra
forecasting of future eruptions of similar intensity.
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Our work represents a step forward in the understanding of multi-sensor strategies
applied at very active explosive volcanoes such as Mount Etna. The next step will be to
better assess individual sensor sensitivities to refine ESP estimate combinations. Additional
information should be taken from other paroxysms, recorded by fewer instruments, to
investigate their capacity to provide ESPs in comparison with both the well-recorded weak
and strong paroxysms presented herein. Such a systematic determination of remote sensor
advantages and limitations should always be carried out to build multi-sensor strategies
that are reliable for a large set of eruptive conditions.
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Appendix A. Summary of Acronyms and Variables Used in This Study

Acronym Term

ARPA Agenzia Regionale per la Protezione dell’Ambiente
BTD Brightness Temperature Difference
EBHD Etna Bronte High Definition camera
ECV Etna Catania Visible
ESP Eruptive Source Parameter
ETN Etna
GSD Grain-Size Distribution
GSDsat Grain-Size Distribution derived from satellite retrievals
GSDMWR Grain-Size Distribution derived from X-band radar data
HYSPLIT Hybrid Single-Particle Lagrangian Integrated Trajectory Model
INGV-OE Istituto Nazionale di Geofisica e Vulcanologia-Osservatorio Etneo
TIR Thermal InfraRed
IS InfraSound
MCA Mass Continuity Approach
MODIS Moderate Resolution Imaging Spectroradiometer
MVT Monte Vetore
MWR Microwave Weather Radar
NSA Near Surface Approach
NASA National Aeronautics and Space Agency
NSEC New SouthEast Crater
SEVIRI Spinning Enhances Visible and InfraRed Imager
SFA Surface Flux Approach
TIR Thermal InfraRed
TGSD Total Grain-Size Distribution
TPA Top Plume Approach
UTC Universal Time Coordinated
VARR Volcanic Ash Radar Retrieval
VATDM Volcanic Ash Transport and Dispersal Model
VPR Volcanic Plume Retrieval
V2B VOLDORAD 2B
WDGSD Whole Deposit Grain-Size Distribution (i.e., GSD derived from tephra-fallout deposit)

Symbol Variable

A Entry Surface of volcanic jets in the radar beams (m2)
c Speed of sound (m/s) [65]
Ct Tephra concentration (kg/m3) [15]
Dn Reflectivity-weighted mean radar diameter (m) [15]
HT Plume Top Height (km a.s.l.)
IL Insertion loss caused by topography (dB) [65]
ka Product between the acoustic wave number k (m−1) and the vent radius a (m) [65]
MER Mass Eruption Rate (kg/s)
qi Volumetric flux from infrasound (m3/s) [65]
|R| Acoustic reflectance [65]
Re Effective radius (m)
S Eruptive vent surface (m2)
t Time (s)
TEM Total Erupted Mass (kg)
ventry Entry velocity of particles in the radar beams (m/s)
vexit Exit velocity (m/s) [12,30]
vr Radial velocity (m/s)
Z Radar Reflectivity factor (dBZ)
α Directivity of the acoustic wave at 0◦ [65]
B,γ,δ,ε VARR Parameters to be used in Equations (3) and (4) [15]
θ Radar beam elevation angle (◦) [12,30]
∆P Pressure signal (Pa) [65]
λ Radar wavelength (m)
ρ Atmosphere density (kg/m3)
ρx Mixture density (kg/m3) [15]
Φ Phi unit of particle sizes
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Appendix B. Grain-Size Data from the 29 August 2011 Tephra-Fallout Deposit
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