66 research outputs found

    Mixing and Reaction at Low Heat Release in the Non-Homogeneous Shear Layer

    Get PDF
    The effects of freestream density ratio on the mixing and combustion in a high Reynolds number, subsonic, gas-phase, non-buoyant, two-dimensional turbulent mixing layer, have been investigated. Measurements of temperature rise (heat release) have been made which enable us to examine the effect of freestream density ratio on several aspects of the mixed fluid state within the turbulent combustion region. In experiments with very high and very low stoichiometric mixture ratios ("flip" experiments), the heat release from an exothermic reaction serves as a quantitative label for the lean reactant freestream fluid that becomes molecularly mixed. Properly normalized, the sum of the mean temperature rise profiles of the two flip experiments represent the probability of fluid molecularly mixed at any composition. The mole fraction distribution and number density profile of the mixed fluid can also be inferred from such measurements. Although the density ratio in these experiments was varied by a factor of thirty, profiles of these quantities show little variation, with integrals varying by less than 10%. This insensitivity differs from that of the composition of molecularly mixed fluid, which is very sensitive to the density ratio. While the profiles of composition exhibit some similarity of shape, the average composition of mixed fluid in the layer varies from nearly 1:2 to over 2:l as the density ratio is increased. A comparison of data and available theory for this offset or average composition is discussed

    Inviscid instability characteristics of free shear layers with non-uniform density

    Get PDF
    The linear spatial instability of two-dimensional two-stream plane mixing layers has been studied extensively in the past. In the case of uniform density, Michalke (1965) investigated the single-stream shear layer and Monkewitz & Huerre (1982) considered the effect of the velocity ratio. Maslowe & Kelly (1971) studied the stratified (non-uniform density) shear layers and showed that density variations can be destabilizing. In all these studies, the mean velocity profile has been assumed to be monotonically increasing from the value on the low-speed stream to that on the high-speed stream and usually the hyperbolic tangent form is used. It should be noted, however, that under experimental conditions the initial mean velocity profile almost always has a wake component due to the boundary layers on the two sides of the splitter plate. The effect of the wake component has only recently come into consideration with the investigations of Miau 1984 and Zhang et al. 1984 for the uniform density case. The purpose of the present work is to study the instability characteristics of both uniform and non-uniform density plane shear layers taking into account the wake component of the initial velocity profile. The inviscid, linear, parallel-flow stability analysis of spatially growing disturbances is utilized to numerically calculate the range of unstable frequencies and wave-numbers

    The Effects of Damkohler Number on a Turbulent Shear Layer - Experimental Results

    Get PDF
    A chemical reaction for which the reaction rate can be varied is studied in a fully developed, two-dimensional, turbulent mixing layer. The layer is formed between two nitrogen streams, one carrying low concentrations of fluorine and the other hydrogen and nitric oxide. For fixed concentrations of fluorine and hydrogen and for nitric oxide concentrations that are small fractions of the fluorine concentration, the heat release is fixed but the overall reaction rate is controlled by the nitric oxide concentration. Therefore, for fixed flow conditions, the nitric oxide concentration determines the ratio of the reaction rate to the mixing rate. For large values of this ratio, the amount of product, at a given downstream location, measured by the mean temperature rise, is independent of the reaction rate, i.e., the reaction is mixing limited. As the reaction rate is reduced the major effects are: (1) amount of product declines (as expected), (2) the mean temperature profile, which is initially some what unsymmetrical because the hydrogen-fluorine freestream concentration ratio is set at a large value, becomes symmetrical, and (3) the ramp-like instantaneous temperature traces within the large structure gradually become more top-hat

    A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties

    Get PDF
    Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impactmodel setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making

    Compression-based Modelling of Musical Similarity Perception

    Get PDF
    Similarity is an important concept in music cognition research since the similarity between (parts of) musical pieces determines perception of stylistic categories and structural relationships between parts of musical works. The purpose of the present research is to develop and test models of musical similarity perception inspired by a transformational approach which conceives of similarity between two perceptual objects in terms of the complexity of the cognitive operations required to transform the representation of the first object into that of the second, a process which has been formulated in informationtheoretic terms. Specifically, computational simulations are developed based on compression distance in which a probabilistic model is trained on one piece of music and then used to predict, or compress, the notes in a second piece. The more predictable the second piece according to the model, the more efficiently it can be encoded and the greater the similarity between the two pieces. The present research extends an existing information-theoretic model of auditory expectation (IDyOM) to compute compression distances varying in symmetry and normalisation using high-level symbolic features representing aspects of pitch and rhythmic structure. Comparing these compression distances with listeners’ similarity ratings between pairs of melodies collected in three experiments demonstrates that the compression-based model provides a good fit to the data and allows the identification of representations, model parameters and compression-based metrics that best account for musical similarity perception. The compression-based model also shows comparable performance to the best-performing algorithms on the MIREX 2005 melodic similarity task

    Multimodel projections of stratospheric ozone in the 21st century

    Get PDF
    Simulations from eleven coupled chemistry-climate models (CCMs) employing nearly identical forcings have been used to project the evolution of stratospheric ozone throughout the 21st century. The model-to-model agreement in projected temperature trends is good, and all CCMs predict continued, global mean cooling of the stratosphere over the next 5 decades, increasing from around 0.25 K/decade at 50 hPa to around 1 K/ decade at 1 hPa under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. In general, the simulated ozone evolution is mainly determined by decreases in halogen concentrations and continued cooling of the global stratosphere due to increases in greenhouse gases (GHGs). Column ozone is projected to increase as stratospheric halogen concentrations return to 1980s levels. Because of ozone increases in the middle and upper stratosphere due to GHGinduced cooling, total ozone averaged over midlatitudes, outside the polar regions, and globally, is projected to increase to 1980 values between 2035 and 2050 and before lower stratospheric halogen amounts decrease to 1980 values. In the polar regions the CCMs simulate small temperature trends in the first and second half of the 21st century in midwinter. Differences in stratospheric inorganic chlorine (Cly) among the CCMs are key to diagnosing the intermodel differences in simulated ozone recovery, in particular in the Antarctic. It is found that there are substantial quantitative differences in the simulated Cly, with the October mean Antarctic Cly peak value varying from less than 2 ppb to over 3.5 ppb in the CCMs, and the date at which the Cly returns to 1980 values varying from before 2030 to after 2050. There is a similar variation in the timing of recovery of Antarctic springtime column ozone back to 1980 values. As most models underestimate peak Cly near 2000, ozone recovery in the Antarctic could occur even later, between 2060 and 2070. In the Arctic the column ozone increase in spring does not follow halogen decreases as closely as in the Antarctic, reaching 1980 values before Arctic halogen amounts decrease to 1980 values and before the Antarctic. None of the CCMs predict future large decreases in the Arctic column ozone. By 2100, total column ozone is projected to be substantially above 1980 values in all regions except in the tropics

    Intrathecal Injection of Spironolactone Attenuates Radicular Pain by Inhibition of Spinal Microglia Activation in a Rat Model

    Get PDF
    Microglia might play an important role in nociceptive processing and hyperalgesia by neuroinflammatory process. Mineralocorticoid receptor (MR) expressed on microglia might play a central role in the modulation of microglia activity. However the roles of microglia and MR in radicular pain were not well understood. This study sought to investigate whether selective MR antagonist spironolactone develop antinociceptive effects on radicular pain by inhibition neuroinflammation induced by spinal microglia activation.Radicular pain was produced by chronic compression of the dorsal root ganglia with SURGIFLO™. The expression of microglia, interleukin beta (IL-1β), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), NR1 subunit of the NMDA receptor (t-NR1), and NR1 subunit phosphorylated at Ser896 (p-NR1) were also markedly up-regulated. Intrathecal injection of spironolactone significantly attenuated pain behaviors as well as the expression of microglia, IL-1β, TNF-α, t-NR1, and p-NR1, whereas the production of IL-6 wasn't affected.These results suggest that intrathecal delivery spironolactone has therapeutic effects on radicular pain in rats. Decreasing the activation of glial cells, the production of proinflammatory cytokines and down-regulating the expression and phosphorylation of NMDA receptors in the spinal dorsal horn and dorsal root ganglia are the main mechanisms contributing to its beneficial effects
    • …
    corecore