11 research outputs found

    Trends in studies of Brazilian stream fish assemblages

    Get PDF
    Studies about fish assemblages in Brazilian streams have grown in recent years, however, it remains unclear whether this increase is followed by increments in the diversity of addressed topics and theoretical frameworks adopted by researchers. We performed a systematic search for Brazilian studies on stream fish assemblages recording study region, publication year, objectives, and spatial and temporal scales adopted. The number of studies is unevenly distributed among regions. Most papers describe the general structure of local fish assemblages and their scientific objectives have not varied through time. Studies have been conducted mainly at small temporal and spatial scales, though the latter is increasing over time. We argue for the need of focusing on recently developed ecological theories and frameworks, and expanding the temporal and spatial scales of studies. These changes will improve regional and local conservation policies, and the visibility of aquatic Brazilian research in the global scientific community. © 2016 Associação Brasileira de Ciência Ecológica e Conservaçã

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Advances in the graphitization protocol at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil

    No full text
    © 2015 Elsevier B.V. In this paper, we summarize the sample preparation methods currently used at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil. We also report on a series of results with regards to the graphitization protocol. Tests with different temperatures and baking times were performed, and carbon stable isotope ratios of graphite were measured by an EA-IRMS (elemental analyzer coupled with an isotopic ratio mass spectrometer) to infer the completeness of the graphitization reaction. We monitored the muffle furnace temperature using an independent thermocouple and found a -60°C offset, which may have caused the lower graphitization yields (detected from the large isotopic fractionation on several reference materials targets). At a temperature of 520°C, the isotopic fractionation in the graphitization reaction was systematically lower (-5‰ in average) and the overall scattering was reduced. As long as isotopic fractionation corrections are made using the online stable isotopes ratios provided by the AMS system, the accuracy of the 14C results should be maintained

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore