50 research outputs found

    MAGNETIC BRAIN STIMULATION MODULATES NEURONAL PLASTICITY IN SPINAL CORD INJURY PATIENTS

    Get PDF
    Patients can often recover good motor function in muscles below an incomplete spinal cord injury. Within a few days of injury natural processes lead to down-regulation of inhibitory pathways within the motor cortex than can be demonstrated electrophysiologically. We believe that this natural change might encourage motor recovery by allowing an increased excitability of surviving descending corticospinal neurones. Repetitive transcranial magnetic stimulation (rTMS) can produce similar changes in corticospinal inhibition in normal uninjured individuals, albeit rather short-lasting. In this preliminary study we have delivered a sham rTMS over one week followed by another week of real treatment to four stable incomplete spinal cord injury patients who already showed reduced inhibition compared with controls. Intracortical inhibition was further reduced during the week of treatment but recovered basal levels within the three-week follow-up period. Longer-term improvements were seen in the clinical scores for both motor and sensory function, perceptual threshold to electrical stimulation of the skin and the time taken to complete a standard peg-board test. Although the measurable electrophysiological effects of rTMS are short-lived it would appear that functional recovery persists for at least three weeks after the treatment. Spinal cord injury patients might be more susceptible to the plastic cortical changes evoked by rTMS than non-injured individuals. This preliminary study provides promising data on which to base a larger investigation with the aim of substantiating the use of rTMS as a tool for routine use in rehabilitation

    Boundaries of Semantic Distraction: Dominance and Lexicality Act at Retrieval

    Get PDF
    Three experiments investigated memory for semantic information with the goal of determining boundary conditions for the manifestation of semantic auditory distraction. Irrelevant speech disrupted the free recall of semantic category-exemplars to an equal degree regardless of whether the speech coincided with presentation or test phases of the task (Experiment 1) and occurred regardless of whether it comprised random words or coherent sentences (Experiment 2). The effects of background speech were greater when the irrelevant speech was semantically related to the to-be-remembered material, but only when the irrelevant words were high in output dominance (Experiment 3). The implications of these findings in relation to the processing of task material and the processing of background speech is discussed

    Undergraduate Research Participation in Electrical Engineering

    Get PDF
    During the 1990-2003 summers the Electrical Engineering Department at the University of Maine will offer ten undergraduate students the opportunity to actively participate in research. Students will receive financial awards plus a subsistence allowance. The available research projects include (1) Environmental Sensors; (2) Intelligent Systems for Automation; (3) Communications Devices and Applications; (4) Motion Control; (5) Microprocessor/Instrumentation Applications; (6) Growth and Characterization of Thin Film Materials; and (7) Power Systems Applications. At least five students will come from institutions where research opportunities are limited and at least four students will be women, minorities or students with disabilities. Students chosen for the program will have displayed a high degree of initiative and independence of thought in both laboratories and course work. Student research projects are chosen to match the student\u27s interest and educational level. In addition to extensive University facilities, students will also have access to facilities at various nearby industries such as Sensor Research and Development Corporation, BIODE Corporation, Bangor Hydro Electric and Central Maine Power Companies, James River, Champion, and Scott Paper Companies, Digital Equipment Corporation, Fairchild and National Semiconductor. At the program culmination a written report and an oral seminar are required from the student. Three academic credits are awarded to the student upon satisfactory completion of the program

    A novel formulation of inhaled sodium cromoglicate (PA101) in idiopathic pulmonary fibrosis and chronic cough: a randomised, double-blind, proof-of-concept, phase 2 trial

    Get PDF
    Background Cough can be a debilitating symptom of idiopathic pulmonary fibrosis (IPF) and is difficult to treat. PA101 is a novel formulation of sodium cromoglicate delivered via a high-efficiency eFlow nebuliser that achieves significantly higher drug deposition in the lung compared with the existing formulations. We aimed to test the efficacy and safety of inhaled PA101 in patients with IPF and chronic cough and, to explore the antitussive mechanism of PA101, patients with chronic idiopathic cough (CIC) were also studied. Methods This pilot, proof-of-concept study consisted of a randomised, double-blind, placebo-controlled trial in patients with IPF and chronic cough and a parallel study of similar design in patients with CIC. Participants with IPF and chronic cough recruited from seven centres in the UK and the Netherlands were randomly assigned (1:1, using a computer-generated randomisation schedule) by site staff to receive PA101 (40 mg) or matching placebo three times a day via oral inhalation for 2 weeks, followed by a 2 week washout, and then crossed over to the other arm. Study participants, investigators, study staff, and the sponsor were masked to group assignment until all participants had completed the study. The primary efficacy endpoint was change from baseline in objective daytime cough frequency (from 24 h acoustic recording, Leicester Cough Monitor). The primary efficacy analysis included all participants who received at least one dose of study drug and had at least one post-baseline efficacy measurement. Safety analysis included all those who took at least one dose of study drug. In the second cohort, participants with CIC were randomly assigned in a study across four centres with similar design and endpoints. The study was registered with ClinicalTrials.gov (NCT02412020) and the EU Clinical Trials Register (EudraCT Number 2014-004025-40) and both cohorts are closed to new participants. Findings Between Feb 13, 2015, and Feb 2, 2016, 24 participants with IPF were randomly assigned to treatment groups. 28 participants with CIC were enrolled during the same period and 27 received study treatment. In patients with IPF, PA101 reduced daytime cough frequency by 31ยท1% at day 14 compared with placebo; daytime cough frequency decreased from a mean 55 (SD 55) coughs per h at baseline to 39 (29) coughs per h at day 14 following treatment with PA101, versus 51 (37) coughs per h at baseline to 52 (40) cough per h following placebo treatment (ratio of least-squares [LS] means 0ยท67, 95% CI 0ยท48โ€“0ยท94, p=0ยท0241). By contrast, no treatment benefit for PA101 was observed in the CIC cohort; mean reduction of daytime cough frequency at day 14 for PA101 adjusted for placebo was 6ยท2% (ratio of LS means 1ยท27, 0ยท78โ€“2ยท06, p=0ยท31). PA101 was well tolerated in both cohorts. The incidence of adverse events was similar between PA101 and placebo treatments, most adverse events were mild in severity, and no severe adverse events or serious adverse events were reported. Interpretation This study suggests that the mechanism of cough in IPF might be disease specific. Inhaled PA101 could be a treatment option for chronic cough in patients with IPF and warrants further investigation

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers โˆผ99% of the euchromatic genome and is accurate to an error rate of โˆผ1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged โ‰ฅ18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5ยท0 months (IQR 4ยท2โ€“6ยท3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0ยท0001) and independently associated with COVID-19 status (odds ratio [OR] 2ยท9 [95% CI 1ยท5โ€“5ยท8]; padjusted=0ยท0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0ยท0001; parenchymal abnormalities), brain abnormalities (p<0ยท0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0ยท014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4โ€“10]; mean age of 59ยท8 years [SD 11ยท7] with multiorgan abnormalities vs mean age of 52ยท8 years [11ยท9] without multiorgan abnormalities; p<0ยท0001), more likely to have three or more comorbidities (OR 2ยท47 [1ยท32โ€“4ยท82]; padjusted=0ยท0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3ยท55 [1ยท23โ€“11ยท88]; padjusted=0ยท025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study

    Get PDF
    Background The impact of COVID-19 on physical and mental health and employment after hospitalisation with acute disease is not well understood. The aim of this study was to determine the effects of COVID-19-related hospitalisation on health and employment, to identify factors associated with recovery, and to describe recovery phenotypes. Methods The Post-hospitalisation COVID-19 study (PHOSP-COVID) is a multicentre, long-term follow-up study of adults (aged โ‰ฅ18 years) discharged from hospital in the UK with a clinical diagnosis of COVID-19, involving an assessment between 2 and 7 months after discharge, including detailed recording of symptoms, and physiological and biochemical testing. Multivariable logistic regression was done for the primary outcome of patient-perceived recovery, with age, sex, ethnicity, body-mass index, comorbidities, and severity of acute illness as covariates. A post-hoc cluster analysis of outcomes for breathlessness, fatigue, mental health, cognitive impairment, and physical performance was done using the clustering large applications k-medoids approach. The study is registered on the ISRCTN Registry (ISRCTN10980107). Findings We report findings for 1077 patients discharged from hospital between March 5 and Nov 30, 2020, who underwent assessment at a median of 5ยท9 months (IQR 4ยท9โ€“6ยท5) after discharge. Participants had a mean age of 58 years (SD 13); 384 (36%) were female, 710 (69%) were of white ethnicity, 288 (27%) had received mechanical ventilation, and 540 (50%) had at least two comorbidities. At follow-up, only 239 (29%) of 830 participants felt fully recovered, 158 (20%) of 806 had a new disability (assessed by the Washington Group Short Set on Functioning), and 124 (19%) of 641 experienced a health-related change in occupation. Factors associated with not recovering were female sex, middle age (40โ€“59 years), two or more comorbidities, and more severe acute illness. The magnitude of the persistent health burden was substantial but only weakly associated with the severity of acute illness. Four clusters were identified with different severities of mental and physical health impairment (n=767): very severe (131 patients, 17%), severe (159, 21%), moderate along with cognitive impairment (127, 17%), and mild (350, 46%). Of the outcomes used in the cluster analysis, all were closely related except for cognitive impairment. Three (3%) of 113 patients in the very severe cluster, nine (7%) of 129 in the severe cluster, 36 (36%) of 99 in the moderate cluster, and 114 (43%) of 267 in the mild cluster reported feeling fully recovered. Persistently elevated serum C-reactive protein was positively associated with cluster severity. Interpretation We identified factors related to not recovering after hospital admission with COVID-19 at 6 months after discharge (eg, female sex, middle age, two or more comorbidities, and more acute severe illness), and four different recovery phenotypes. The severity of physical and mental health impairments were closely related, whereas cognitive health impairments were independent. In clinical care, a proactive approach is needed across the acute severity spectrum, with interdisciplinary working, wide access to COVID-19 holistic clinical services, and the potential to stratify care. Funding UK Research and Innovation and National Institute for Health Research
    corecore