519 research outputs found
The Ising Model for Neural Data: Model Quality and Approximate Methods for Extracting Functional Connectivity
We study pairwise Ising models for describing the statistics of multi-neuron
spike trains, using data from a simulated cortical network. We explore
efficient ways of finding the optimal couplings in these models and examine
their statistical properties. To do this, we extract the optimal couplings for
subsets of size up to 200 neurons, essentially exactly, using Boltzmann
learning. We then study the quality of several approximate methods for finding
the couplings by comparing their results with those found from Boltzmann
learning. Two of these methods- inversion of the TAP equations and an
approximation proposed by Sessak and Monasson- are remarkably accurate. Using
these approximations for larger subsets of neurons, we find that extracting
couplings using data from a subset smaller than the full network tends
systematically to overestimate their magnitude. This effect is described
qualitatively by infinite-range spin glass theory for the normal phase. We also
show that a globally-correlated input to the neurons in the network lead to a
small increase in the average coupling. However, the pair-to-pair variation of
the couplings is much larger than this and reflects intrinsic properties of the
network. Finally, we study the quality of these models by comparing their
entropies with that of the data. We find that they perform well for small
subsets of the neurons in the network, but the fit quality starts to
deteriorate as the subset size grows, signalling the need to include higher
order correlations to describe the statistics of large networks.Comment: 12 pages, 10 figure
HST Spectrophotometry and Models for Solar Analogs
Absolute flux distributions for seven solar analog stars are measured from
0.3 to 2.5 \mu m by HST spectrophotometry.In order to predict the longer
wavelength mid-IR fluxes that are required for JWST calibration, the HST SEDs
are fit with Castelli & Kurucz model atmospheres; and the results are compared
with fits from the MARCS model grid. The rms residuals in 10 broad band bins
are all <0.5% for the best fits from both model grids. However, the fits differ
systematically: The MARCS fits are 40-100 K hotter in T_{eff}, 0.25-0.80 higher
in log g, 0.01-0.10 higher in log z, and 0.008-0.021 higher in the reddening
E(B-V), probably because their specifications include different metal
abundances. Despite these differences in the parameters of the fits, the
predicted mid-IR fluxes differ by only ~1%; and the modeled flux distributions
of these G stars have an estimated ensemble accuracy of 2% out to 30 \mu m.Comment: 19 pages, 2 tables, 7 figures; to appear in AJ 2010 Apri
Upregulation and epigenetic modification of the creatine transporter SLC6A8 in non-small cell lung cancer
Introduction. Lung cancer is a major cause of cancer-related death worldwide and effective therapies, besides surgery, are available only for a small proportion of patients. Since cellular respiration is known to be broadly altered in malignant tumors, the cellular processes of respiration can be a potential therapeutic target. One important element of cellular respiration is creatine and its transport by the creatine transporter SLC6A8. Here we describe the expression of SLC6A8 at the RNA and protein level, epigenetic modifications as well as survival analysis in NSCLC tissues and matched controls.
Materials and Methods. We analyzed epigenetic modifications of the SLC68A gene in 32 patients, of which 18 were additionally analyzed by transcriptome analysis. The expression of SLC6A8 at the protein level was assessed by immunohistochemistry using an independent cohort and correlated with clinico-pathological data including survival. Kaplan-Meier analysis was performed to analyze the possible effects of the transcriptional levels of SLC6A8 in another separate cohort (n=1925).
Results. SLC6A8 loci are epigenetically modified in NSCLC compared with tumor-free controls. SLC6A8 is upregulated in NSCLC at the RNA and protein level. High mRNA expression of SLC6A8 was associated with an overall poor prognosis in lung adenocarcinoma patients and displayed the strongest adverse prognostic effect in male smokers with adenocarcinomas. Results of transcriptome analysis were partially confirmed at the protein level.
Conclusions. Our results suggest an important role of creatine and its transport via SLC6A8 in NSCLC
Retired A Stars and Their Companions. III. Comparing the Mass-Period Distributions of Planets Around A-Type Stars and Sun-Like Stars
We present an analysis of ~5 years of Lick Observatory radial velocity
measurements targeting a uniform sample of 31 intermediate-mass subgiants (1.5
< M*/Msun < 2.0) with the goal of measuring the occurrence rate of Jovian
planets around (evolved) A-type stars and comparing the distributions of their
orbital and physical characteristics to those of planets around Sun-like stars.
We provide updated orbital solutions incorporating new radial velocity
measurements for five known planet-hosting stars in our sample; uncertainties
in the fitted parameters are assessed using a Markov Chain Monte Carlo method.
The frequency of Jovian planets interior to 3 AU is 26 (+9,-8)%, which is
significantly higher than the ~5-10% frequency observed around solar-mass
stars. The median detection threshold for our sample includes minimum masses
down to {0.2, 0.3, 0.5, 0.6, 1.3} MJup within {0.1, 0.3, 0.6, 1.0, 3.0} AU. To
compare the properties of planets around intermediate-mass stars to those
around solar-mass stars we synthesize a population of planets based on the
parametric relationship dN ~ M^{alpha}P^{beta} dlnM dlnP, the observed planet
frequency, and the detection limits we derived. We find that the values of
alpha and beta for planets around solar-type stars from Cumming et al. fail to
reproduce the observed properties of planets in our sample at the 4 sigma
level, even when accounting for the different planet occurrence rates. Thus,
the properties of planets around A stars are markedly different than those
around Sun-like stars, suggesting that only a small (~ 50%) increase in stellar
mass has a large influence on the formation and orbital evolution of planets.Comment: Accepted by the Astrophysical Journal; 15 pages, 15 figure
New Debris Disks Around Nearby Main Sequence Stars: Impact on The Direct Detection of Planets
Using the MIPS instrument on the Spitzer telescope, we have searched for
infrared excesses around a sample of 82 stars, mostly F, G, and K main-sequence
field stars, along with a small number of nearby M stars. These stars were
selected for their suitability for future observations by a variety of
planet-finding techniques. These observations provide information on the
asteroidal and cometary material orbiting these stars - data that can be
correlated with any planets that may eventually be found. We have found
significant excess 70um emission toward 12 stars. Combined with an earlier
study, we find an overall 70um excess detection rate of % for mature
cool stars. Unlike the trend for planets to be found preferentially toward
stars with high metallicity, the incidence of debris disks is uncorrelated with
metallicity. By newly identifying 4 of these stars as having weak 24um excesses
(fluxes 10% above the stellar photosphere), we confirm a trend found in
earlier studies wherein a weak 24um excess is associated with a strong 70um
excess. Interestingly, we find no evidence for debris disks around 23 stars
cooler than K1, a result that is bolstered by a lack of excess around any of
the 38 K1-M6 stars in 2 companion surveys. One motivation for this study is the
fact that strong zodiacal emission can make it hard or impossible to detect
planets directly with future observatories like the {\it Terrestrial Planet
Finder (TPF)}. The observations reported here exclude a few stars with very
high levels of emission, 1,000 times the emission of our zodiacal cloud,
from direct planet searches. For the remainder of the sample, we set relatively
high limits on dust emission from asteroid belt counterparts
Constraining dark matter halo properties using lensed SNLS supernovae
This paper exploits the gravitational magnification of SNe Ia to measure
properties of dark matter haloes. The magnification of individual SNe Ia can be
computed using observed properties of foreground galaxies and dark matter halo
models. We model the dark matter haloes of the galaxies as truncated singular
isothermal spheres with velocity dispersion and truncation radius obeying
luminosity dependent scaling laws. A homogeneously selected sample of 175 SNe
Ia from the first 3-years of the Supernova Legacy Survey (SNLS) in the redshift
range 0.2 < z < 1 is used to constrain models of the dark matter haloes
associated with foreground galaxies. The best-fitting velocity dispersion
scaling law agrees well with galaxy-galaxy lensing measurements. We further
find that the normalisation of the velocity dispersion of passive and star
forming galaxies are consistent with empirical Faber-Jackson and Tully-Fisher
relations, respectively. If we make no assumption on the normalisation of these
relations, we find that the data prefer gravitational lensing at the 92 per
cent confidence level. Using recent models of dust extinction we deduce that
the impact of this effect on our results is very small. We also investigate the
brightness scatter of SNe Ia due to gravitational lensing. The gravitational
lensing scatter is approximately proportional to the SN Ia redshift. We find
the constant of proportionality to be B = 0.055 +0.039 -0.041 mag (B < 0.12 mag
at the 95 per cent confidence level). If this model is correct, the
contribution from lensing to the intrinsic brightness scatter of SNe Ia is
small for the SNLS sample.Comment: 11 pages, 7 figures, accepted for publication in MNRA
POISSON project - II - A multi-wavelength spectroscopic and photometric survey of young protostars in L 1641
Characterising stellar and circumstellar properties of embedded young stellar
objects (YSOs) is mandatory for understanding the early stages of the stellar
evolution. This task requires the combination of both spectroscopy and
photometry, covering the widest possible wavelength range, to disentangle the
various protostellar components and activities. As part of the POISSON project,
we present a multi-wavelength spectroscopic and photometric investigation of
embedded YSOs in L1641, aimed to derive the stellar parameters and evolutionary
stages and to infer their accretion properties. Our database includes
low-resolution optical-IR spectra from the NTT and Spitzer (0.6-40 um) and
photometric data covering a spectral range from 0.4 to 1100 um, which allow us
to construct the YSOs spectral energy distributions (SEDs) and to infer the
main stellar parameters. The SED analysis allows us to group our 27 YSOs into
nine Class I, eleven Flat, and seven Class II objects. However, on the basis of
the derived stellar properties, only six Class I YSOs have an age of ~10^5 yr,
while the others are older 5x10^5-10^6 yr), and, among the Flat sources, three
out of eleven are more evolved objects (5x10^6-10^7 yr), indicating that
geometrical effects can significantly modify the SED shapes. Inferred mass
accretion rates (Macc) show a wide range of values (3.6x10^-9 to 1.2x10^-5
M_sun yr^-1), which reflects the age spread observed in our sample. Average
values of mass accretion rates, extinction, and spectral indices decrease with
the YSO class. The youngest YSOs have the highest Macc, whereas the oldest YSOs
do not show any detectable jet activity in either images and spectra. We also
observe a clear correlation among the YSO Macc, M*, and age, consistent with
mass accretion evolution in viscous disc models.Comment: 61 pages, 16 figures; A&A in pres
The brightness of SN 1991T and the uniformity of decline-rate and colour corrected absolute magnitudes of supernovae Ia
We present a distance to NGC 4527, the host galaxy of the type Ia SN 1991T,
measured by surface brightness fluctuations. This supernova has been labelled
``peculiar'' both on the grounds of its spectroscopic behaviour and its
apparent overluminosity with respect to other supernovae. The distance modulus
to NGC 4527 and thus to SN 1991T is 30.26+-0.09. This relatively short distance
largely removes the discrepancy with other Ia supernovae having similar
light-curve characteristics and also removes the motivation for interpreting SN
1991T as a super-Chandrasekhar explosion. However, the reddening uncertainty
results in significant uncertainty of the absolute magnitudes.Comment: 7 pages, 2 Postscript figures, accepted for publication by Astronomy
and Astrophysic
CD40-activated B cells induce anti-tumor immunity in vivo
The introduction of checkpoint inhibitors represents a major advance in cancer immunotherapy. Some studies on checkpoint inhibition demonstrate that combinatorial immunotherapies with secondary drivers of anti-tumor immunity provide beneficial effects for patients that do not show a strong endogenous immune response. CD40-activated B cells (CD40B cells) are potent antigen presenting cells by activating and expanding naïve and memory CD4 + and CD8 + and homing to the secondary lymphoid organs. In contrast to dendritic cells, the generation of highly pure CD40B cells is simple and time efficient and they can be expanded almost limitlessly from small blood samples of cancer patients. Here, we show that the vaccination with antigen-loaded CD40B cells induces a specific T-cell response in vivo comparable to that of dendritic cells. Moreover, we identify vaccination parameters, including injection route, cell dose and vaccination repetitions to optimize immunization and demonstrate that application of CD40B cells is safe in terms of toxicity in the recipient. We furthermore show that preventive immunization of tumor-bearing mice with tumor antigen-pulsed CD40B cells induces a protective anti-tumor immunity against B16.F10 melanomas and E.G7 lymphomas leading to reduced tumor growth. These results and our straightforward method of CD40B-cell generation underline the potential of CD40B cells for cancer immunotherapy
Lithium during the AGB evolution in young open clusters of the Large Magellanic cloud
We present the results of mid-resolution spectroscopy in the LiI 6708 AA
spectral region of Asymptotic Giant Branch (AGB) stars belonging to young open
clusters of the Large Magellanic Cloud. Most stars belong to the clusters NGC
1866 and NGC 2031, which have an age of ~ 150 Myr. Lithium lines of different
strength are detected in the spectra of stars evolving along the AGB, not
always in agreement with theoretical predictions. We also analyze the infrared
luminosities (ISOCAM data) of these stars, to discuss if their evolutionary
phase precedes or follows the lithium production stage.Comment: 10 pages, 6 figure
- …