42 research outputs found

    Computation of generalized matrix functions

    Get PDF
    We develop numerical algorithms for the efficient evaluation of quantities associated with generalized matrix functions [J. B. Hawkins and A. Ben-Israel, Linear and Multilinear Algebra 1(2), 1973, pp. 163-171]. Our algorithms are based on Gaussian quadrature and Golub--Kahan bidiagonalization. Block variants are also investigated. Numerical experiments are performed to illustrate the effectiveness and efficiency of our techniques in computing generalized matrix functions arising in the analysis of networks.Comment: 25 paged, 2 figure

    The ICO Phenomenon and Its Relationships with Ethereum Smart Contract Environment

    Full text link
    Initial Coin Offerings (ICO) are public offers of new cryptocurrencies in exchange of existing ones, aimed to finance projects in the blockchain development arena. In the last 8 months of 2017, the total amount gathered by ICOs exceeded 4 billion US$, and overcame the venture capital funnelled toward high tech initiatives in the same period. A high percentage of ICOS is managed through Smart Contracts running on Ethereum blockchain, and in particular to ERC-20 Token Standard Contract. In this work we examine 1388 ICOs, published on December 31, 2017 on icobench.com Web site, gathering information relevant to the assessment of their quality and software development management, including data on their development teams. We also study, at the same date, the financial data of 450 ICO tokens available on coinmarketcap.com Web site, among which 355 tokens are managed on Ethereum blochain. We define success criteria for the ICOs, based on the funds actually gathered, and on the behavior of the price of the related tokens, finding the factors that most likely influence the ICO success likeliness

    A control system for preventing cavitation of centrifugal pumps

    Get PDF
    Cavitation is a well-known phenomenon that may occur, among other turbo-machines, in centrifugal pumps and can result in severe damage of both the pump and the whole hydraulic system. There are situations in which, in principle, the cavitation could be avoided by detecting the condition of incipient cavitation, and changing slightly the working point of the whole system in order to move away from that condition. In the present paper two simple closed-loop control strategies are implemented, acting on the pump's rotational speed and fed by the measurements of a set of inertial sensors. In particular, the research is focused on a centrifugal pump normally employed in hydraulic systems. The pump operates in a dedicated test rig, where cavitation can be induced by acting on a reservoir's pressure. Three accelerometers are installed in the pump body along three orthogonal axes. An extensive set of experiments has been carried out at different flow rates and a number of signals' features both in the time domain and in the frequency domain have been considered as indicators of incipient cavitation. The amount of energy of the signal captured by the accelerometer in the component orthogonal to the flow direction, in the band from 10 to 12.8 kHz, demonstrated to be effective in detecting the incipient cavitation, by selecting a proper (condition-dependent) threshold. Therefore, two simple controllers have been designed: the first regulates the speed of the pump, to recover from cavitation, bringing the indicator back to the nominal value, while the second allows to reduce the pump's rotational speed when the cavitation detector indicates the incipient cavitation and restoring the nominal speed when possible. The latter approach is rather general, because the threshold-based detector can be substituted by any detector providing binary output. Experimental results are reported that demonstrate the effectiveness of the approach

    Global and Regional IUCN Red List Assessments: 6

    Get PDF
    In this contribution, the conservation status assessment of four vascular plants according to IUCN categories and criteria are presented. It includes the assessment of Epipactis maricae (Croce, Bongiorni, De Vivo & Fori) Presser & S.Hertel at global level, and the regional assessment of Cerinthe retorta Sm. (Italy), Platanthera kuenkelei H.Baumann subsp. kuenkelei (Europe) and Typha elephantina Roxb. (Egypt)

    Rational positioning of 3D-printed voxels to realize high-fidelity multifunctional soft-hard interfaces

    Get PDF
    Living organisms use functional gradients (FGs) to interface hard and soft materials (e.g., bone and tendon), a strategy with engineering potential. Past attempts involving hard (or soft) phase ratio variation have led to mechanical property inaccuracies because of microscale-material macroscale-property nonlinearity. This study examines 3D-printed voxels from either hard or soft phase to decode this relationship. Combining micro/macroscale experiments and finite element simulations, a power law model emerges, linking voxel arrangement to composite properties. This model guides the creation of voxel-level FG structures, resulting in two biomimetic constructs mimicking specific bone-soft tissue interfaces with superior mechanical properties. Additionally, the model studies the FG influence on murine preosteoblast and human bone marrow-derived mesenchymal stromal cell (hBMSC) morphology and protein expression, driving rational design of soft-hard interfaces in biomedical applications.</p

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves

    Get PDF
    We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.Comment: 53 pages, 18 figures; v2: minor changes to match published versio
    corecore