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Abstract.We investigate the potential for the LISA space-based interferometer to detect the
stochastic gravitational wave background produced from di↵erent mechanisms during infla-
tion. Focusing on well-motivated scenarios, we study the resulting contributions from particle
production during inflation, inflationary spectator fields with varying speed of sound, e↵ec-
tive field theories of inflation with specific patterns of symmetry breaking and models leading
to the formation of primordial black holes. The projected sensitivities of LISA are used in
a model-independent way for various detector designs and configurations. We demonstrate
that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible
vacuum tensor modes expected from any inflationary background.

Keywords: gravitational waves / experiments, gravitational waves / theory, inflation, pri-
mordial gravitational waves (theory)
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1 Introduction

Gravitational waves (GWs) are ripples of the space-time metric, corresponding to a tensor
perturbation hij of the Friedmann-Lemaitre-Robertson-Walker (FLRW) line element,

ds2 = �dt2 + a2(t) (�ij + hij) dx
idxj , (1.1)

which is transverse (@ihij = 0) and traceless (hii = 0). Here t denotes the physical time
and a(t) represents the scale factor. The transverse and traceless conditions leave only two
independent and physical degrees of freedom, the two polarizations of the GWs.

The recent direct detection of GWs [1, 2] by Advanced LIGO (Laser Interferometer
Gravitational-Wave Observatory) [3] represents a milestone in astronomy. This detection
has opened a new window for exploring both the late and early stages of the Universe. In the
coming years, many astrophysical sources are expected to be detected by LIGO and other
planned detectors, like Advanced VIRGO [4], KAGRA [5], and eventually LIGO-India [6] and
Einstein Telescope (ET) [7]. The European Space Agency (ESA) has recently approved the
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first GW observer in space, and the Laser Interferometer Space Antenna (LISA) project [8]
is the main candidate for this mission. LISA will have the potential to detect, not only astro-
physical sources, but also cosmological sources, or at least to constrain early Universe scenar-
ios. Gravitational waves are in fact the most promising cosmic relic to probe the unknown
aspects of the early Universe. Su�ciently energetic processes in the early Universe imprinted
characteristic signatures in relic GW backgrounds. It is important therefore to characterize
all possible GW signals in order to achieve a better understanding of a future detection.

A main goal of modern cosmology is to detect GWs produced in the early Universe.
As GWs decouple immediately upon production, they travel freely through space, carrying
information about the source that produced them. From non-equilibrium phenomena in the
early Universe, we expect a strong production of GWs from e.g. (p)reheating [9–23], phase
transitions [24–40], or cosmic defects [41–54]. Gravitational waves with su�ciently large
amplitude from preheating are naturally peaked at very high frequencies, and hence out of
the reach of LISA or other planned detectors. Gravitational waves from phase transitions
are however peaked at frequencies depending on the energy scale of the phase transition,
hence both high and low frequency peaked backgrounds with su�ciently large amplitude can
be expected. In particular, the GW background from the electroweak phase transition lies
precisely in the LISA frequency window of f ⇠ (10�5�0.1) Hz. The GW background(s) from
cosmic defects span many decades in frequency, and are therefore expected to cross through
the frequency window of all planned detectors. Whether the GW signal from cosmic defects
can be detected, depends on the scenario, mostly on the energy scale of the phase transition
that created the defects in the first place. The detection of any of these GW backgrounds
from the early Universe, will allow us to access into physics beyond the reach of high-energy
particle colliders, like the Large Hadron Collider (LHC).

In this paper we rather focus on the GWs expected from cosmic inflation. In the
absence of any source, GWs are always generated quantum mechanically during inflation [55].
Moreover, depending of the modeling of the inflationary sector, active sources can also be
present during inflation, giving rise to a further contribution to the GWs signal, besides that
generated by quantum fluctuations, see e.g. [56] for a recent review. The features of the
GWs produced by quantum fluctuations of the gravitational field, reflect the properties of
the theory of gravity which underlines the inflationary model, while the GWs contribution
induced by the presence of a source term, reflects the presence of further fields besides the
inflaton. At the end, from the inflationary stage we expect the universe to be filled in, at
the present time, by a GW spectral-energy density given by two contributions: one due to
quantum fluctuations of the gravitational field, and in some cases by a second contribution due
to the presence of a source term. In general, modifying the gravity theory which underlines
the inflationary physics, and/or assuming the presence of active sources during inflation,
gives rise to the production of GWs with a large amplitude and tilt. A detection of any
of these primordial GW signals will provide information about the energy scale and other
relevant parameters of inflation, opening a window into the inflationary physics beyond the
reach of (and complementary to) the Cosmic Microwave Background (CMB). It will also help
to discriminate inflationary models from each other, ruling out entire classes of models.

The irreducible background of gravitational waves from inflation. During inflation,
GWs are always expected to be generated by the amplification of vacuum metric fluctuations.
This background represents an irreducible contribution from any inflationary scenario. Its
amplitude encodes direct information about the energy scale of inflation, or more precisely,

– 2 –
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about the Hubble parameter during inflation. In the standard inflation scenarios, where the
accelerated expansion is driven by a scalar field slowly rolling down along its flat potential,
tensor fluctuations are characterized by an almost scale invariant spectrum, slightly red
tilted. Denoting by ⌦GW today’s GW fractional energy density per logarithmic wave-number
interval, the amplitude of this irreducible background, at the frequencies corresponding to
the CMB scales fCMB ⇠ 10�18 � 10�17 Hz, is

h2⌦CMB
GW ⌘ h2⌦GW (fCMB) ⇡ 5 · 10�16

✓
H

Hmax

◆2

, (1.2)

where H is the inflationary Hubble rate (evaluated at the CMB scales), and Hmax ' 8.8 ⇥
1013GeV is the current upper bound on H [57]. If we parametrize the GW energy-density
spectrum at di↵erent frequencies by a power law around a pivot scale at the CMB frequencies,
we can write

⌦GW(f) = ⌦CMB
GW

✓
f

fCMB

◆nT

, (1.3)

with nT a spectral index. In the case of standard single-field slow-roll inflation models, it
must be satisfied the consistency relation [58]

nT = �r/8 , (1.4)

where r ⌘ AT /AS is the so-called tensor-to-scalar perturbation ratio, with AT and AS the
amplitude of the primordial tensor and scalar power spectra. In standard inflation models
we expect therefore, a slightly red tilted spectrum, i.e. nT < 0 with |nT | ⌧ 1, as the current
bounds from the CMB indicate r . 0.1, see discussion at the end of section 2.

A detection of this background will provide extremely useful information about the early
Universe. It will help to di↵erentiate inflationary models, ruling out entire model families.
It will also probe some aspects of the quantum nature of fields and gravity. This irreducible
background leaves a precise imprint on the CMB, resulting in a specific polarization pattern of
B-modes, which is the primary probe for its detection [59, 60]. A large number of experiments
are presently active or they are proposed for searching such a signal through indirect e↵ects on
the CMB. However, given the current strong bounds from the CMB [57] on the amplitude of
the spectrum, eq. (1.2), and the fact that it is predicted to be red tilded, eq. (1.4), this signal
cannot be detected by LISA or any of the ground-based planned detectors. Even in a best-
case scenario, assuming an almost scale invariant spectrum, the amplitude ⌦gw (f) ⇠ 10�15 is
simply too small. This tiny amplitude remains therefore only potentially interesting for some
next-to-next-generation of space-based observatories, like Big Bang Observatory (BBO) [61]
and maybe Deci-hertz Interferometer Gravitational wave Observatory (DECIGO) [62].

Beyond the irreducible background of gravitational waves. We demonstrate in this
work that the details of the GWs produced during inflation, and hence the perspective of
detecting such primordial GW backgrounds, change completely if:

i) additional degrees of freedom, besides the inflaton, are present during inflation

ii) new symmetry patterns are considered in the inflationary sector

iii) large peaks in the inflationary scalar spectrum collapse into primordial black holes after
horizon re-entry.
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In all these circumstances, the spectrum of GWs associated to these new ingredients
can be rather large and blue-tilted, or exhibit a large-amplitude bump at specific scales. In
the case of additional degrees of freedom, these provide a source term in the GW evolution
equation, that in Fourier space reads

ḧij (k, t) + 3H ḣij (k, t) + k2 hij (k, t) =
2

M2
Pl

⇧TT
ij (k, t) , (1.5)

where a dot denotes derivative with respect to t , H is the Hubble rate, MPl ' 2.44 ·1018GeV
is the reduced Planck mass, k is the physical momentum, and ⇧TT

ij is the source of the GWs,
corresponding to the transverse-traceless part of the anisotropic stress ⇧ij . The latter is given
by a2⇧ij = Tij � pa2 (�ij + hij), where Tij denotes the spatial components of the energy-
momentum tensor of the additional sources and p the background value of the pressure. The
amplitude of the GW background predicted whenever either of the circumstances i), ii) or
iii) are met during inflation, can significantly overtake the irreducible GW signal (1.2) due
to quantum fluctuations. The latter are characterized by the same equation (1.5) but with
negligible anisotropic stress, ⇧TT

ij = 0 (in this case, tensor perturbations are generated by
the fast accelerated expansion of the Universe).

The possibility of detecting these inflation-related backgrounds with GW interferome-
ters, is therefore very compelling. These scenarios represent a new source of GWs, with an
amplitude much larger than the standard irreducible inflationary background,1 providing an
attractive target for the upcoming first space-based GW observer, LISA, which will have the
ability to probe a significant fraction of their parameter space.

In order to design the best configuration for the LISA mission, it becomes important to
determine what information can be extracted from a detection (or an absence of it) of signals
at the frequencies probed by LISA, underlining the importance of the complementarity with
the CMB scales. In this paper we address, specifically for the LISA mission, the scientific goal
of extracting information from the inflationary era, studying the parameter space compatible
with a detection/non-detection of a GW signal with LISA. We have combined our results
for LISA with independent constraints coming from other probes at di↵erent scales. From
our analysis we will argue that measurements of a GW signal on the small scales accessible
to LISA, will become of fundamental importance in order to provide constraints on tensor
perturbations complementary to the CMB. Spanning 16 orders of magnitudes in frequency,
from the CMB to the LISA frequencies, this represents a unique opportunity to test the
latest stage of the inflationary period, to probe the couplings of the inflaton to the latter,
the presence of extra fields besides the inflaton, and to probe the degree of violation of the
inflationary consistency relation. Concretely, we focus on four well-motivated scenarios:

• Particle production during inflation: in a broad class of well-motivated models of infla-
tion the inflaton � sources gauge fields via the coupling �Fµ⌫ F̃µ⌫ . In its turn, the gauge
field sources a population of GWs that generally have a blue spectrum and can there-
fore rise to an observable level at LISA scales. Contrary to astrophysical backgrounds,
this population has a net chirality and is highly non-Gaussian.

• Spectator field(s) during inflation: if, besides the inflaton, some spectator field(s) are
present during inflation, a classical production of GWs can take place. The amplitude

1Note that there are also alternative scenarios that may produce a large background of GWs, possibly
accessible to LISA, see e.g. [63]. In this paper, however, we only focus on the inflation-related scenarios listed
in page 5.
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Name A5M5 A5M2 A2M5 A2M2 A1M5 A1M2

Arm length [106Km] 5 5 2 2 1 1

Duration [years] 5 2 5 2 5 2

Table 1. The six representative LISA configurations chosen for the analysis (number of links fixed
to six and noise level to N2 (for a definition, c.f [65])), where in the notation AiMj, i refers to the
length of the arms in millions of Km and j to the duration of the mission.

and spectral index of such GW background, turn out to be specified by the sound speed
of the spectator field(s), as well as by the time variation of the latter. Interestingly,
this GW background is expected to be blue-tilted.

• E↵ective Field Theory (EFT) of space-reparametrization: when space reparameteriza-
tion invariance is broken during inflation, the graviton can acquire a mass. Then the
tensor spectrum can be blue and get enhanced at small scales, not because of interac-
tions between the inflaton and other auxiliary fields, but due to the specific symmetry
breaking pattern induced by the fields driving inflation.

• Primordial Black Holes (PBHs): certain models of inflation can produce large peaks
in the matter power spectrum, that later collapse forming primordial black holes upon
horizon reentry, during the radiation-dominated era. These PBHs are clustered and
merge within the age of the Universe, generating a stochastic background of GWs that
could be detected by LISA.

In this paper we will quantify the ability of LISA to probe inflation with gravitational
waves. We will focus on the four well motivated scenarios cited above. The paper is structured
as follows. In section 2 we discuss the LISA sensitivity to a stochastic background. In
section 3 we study the GW signal from particle production during inflation, in section 4 the
GW signal from inflationary spectator fields, in section 5 the GW production in the context
of the e↵ective field theory of inflation new symmetry patterns, and in section 6 the GW
production from merging of primordial black holes. In section 7 we summarize our results.

2 LISA sensitivity to a stochastic background

In 2013 the European Space Agency (ESA) approved a GW observer in space as the L3
mission. The main candidate for this mission is a space-borne interferometer based on the
long-standing, ESA-NASA joint project LISA (Laser Interferometer Space Antenna). The
goal of the LISA mission is to detect GWs in the frequency range (10�5 � 0.1) Hz with high
sensitivity, see e.g. ref. [64] and references therein. This frequency band is unexplored so
far and very rich with both astrophysical and cosmological sources: the main target is the
GW signal from massive black hole binaries (MBHB) (masses in the range 104 � 107M�)
with high signal-to-noise ratio (SNR) and up to high redshift, see e.g. ref. [65] and references
therein. However, low-mass black hole binaries, as those detected by LIGO in the range of
few tens of solar masses, will also be visible far from merging [66, 67], together with galactic
binaries [68], extreme mass ratio inspirals (EMRIs) [69], and possibly a stochastic background
from the early Universe [39].

In 2015, in preparation for the L3 mission, ESA appointed the “Gravitational Observa-
tory Advisory Team” (GOAT) to provide advice on the science return of a range of possible
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configurations for the eLISA (evolved LISA) detector. Several analyses were then conducted
on the scientific performance of di↵erent (e)LISA designs to specify the science case: the
present work is part of this series of papers. The first paper of this series dealt with the
GW signal from massive black hole binaries [65], the second paper with the stochastic back-
ground from first order phase transitions occurring in the early Universe [39], and the third
one with the use of massive black hole binaries as standard sirens to probe the expansion
of the Universe [70]. A paper on the GW signal from EMRIs is in preparation, and other
studies dealing with the scientific performances of (e)LISA have also been completed outside
the series, see for example [66, 67, 71]. Here, we address specifically the potential of several
LISA configurations to detect a stochastic background of GWs coming from inflation.

The variable characteristics of the (e)LISA configuration analysed in the aforementioned
papers were the low-frequency noise level (N1 and N2, see [65]), the number of laser links
(4 or 6), the length of the interferometer arm (1, 2 or 5 million km), and the duration of
the mission (2 or 5 years). Since then, a major achievement has been reached: the LISA
Pathfinder satellite has flown and demonstrated that the expected instrumental noise in
(e)LISA can be reduced six times below the original requirement [72]. The noise that we
adopt in this analysis is therefore the so-called N2 noise level [65]: this has been tested by the
pathfinder at frequencies f > 1 mHz, but the forecast is that it will be finally achieved over
the whole frequency spectrum. Moreover, the outcome of the GOAT study accompanied by
the renewed international interest in the (e)LISA mission, in particular from NASA, following
both the first GW direct detection by the LIGO and Virgo collaborations and the successful
flight of the Pathfinder, prompted the community to anticipate that the number of laser
links of the future GW Observer can be six. Correspondingly, the name goes back to LISA.
Therefore, in this work we consider six LISA configurations: having fixed the number of laser
links to six (L6) and the best low-frequency noise level (N2), we let vary the length of the
arms (A1, A2, and A5 for respectively 1, 2, and 5 million km) and the mission duration (M2
and M5, for respectively 2 and 5 years). Table 1 summarizes the characteristics of these
configurations.

The sensitivity curves to a stochastic background of GW have been discussed in [39] for
four representative LISA configurations: two with four links and two with six links (for all
configurations, a paper is in preparation [73]). We briefly revise the strategy adopted there to
assess the detectability of a generic GW background, and present the new sensitivity curves
of the six configurations under analysis here. Applying a Bayesian method, refs. [74, 75]
found that, over one year, the best 6-link configuration (with N2 noise level and 5 million
km arms) can detect a white noise background at the level of h2⌦gw = 10�13. One can use
this result and convert it into a threshold SNR above which the signal is visible. In order
to do so, we compute for every LISA configuration the power law sensitivity curve defined
in [76]. With respect to the power law sensitivity curve, the SNR corresponding to a white
noise spectrum with h2⌦gw = 10�13 is SNR = 10; we therefore classify every signal with
SNR > 10 as visible by a six-link LISA configuration. The power law sensitivity curves for
the six configurations considered in this work are shown in figure 1.

In figure 2 we present the detectability, by the six LISA configurations, of a generic GW
background parametrised by a single power law, ⌦gw = A(f/f⇤)nT . The regions in parameter
space (nT , A), for several values of the pivot frequency f⇤, have been derived applying the
strategy described above, in particular they represent values of the parameters for which the
signal is visible with SNR > 10. We have chosen representative values of the pivot frequency
f⇤, ranging from far smaller to far larger than the frequency of maximal sensitivity of the

– 6 –
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Figure 1. Power law sensitivity curves for the six LISA configurations considered in this work: red
A5M5, red dashed A5M2, blue A2M5, blue dashed A2M2, green A1M5, green dashed A1M2.

instrument configurations. Values of the spectral index close to zero are only visible for high
enough amplitudes.

The parametrization of the GW energy-density spectrum by a power law opens the
possibility to constrain cosmological parameters which are strictly connected with the infla-
tionary period. We expect the related GW background to cover a wide range of frequencies,
from CMB scales up to the scales where laser interferometers are sensitive. Since current
CMB measurements provide an upper bound on the inflationary GWs amplitude, it is useful
to take into account such a constraint. In particular, we can constrain the GW spectral index
nT and tensor-to-scalar ratio r ⌘ AT /AS . Let us assume a power law spectrum as in eq. (1.3),
⌦GW(f) = ⌦CMB

GW (f/fCMB)nT , but with nT not constrained to follow the consistency relation
eq. (1.4) between nT and r. We can then re-express ⌦CMB

GW in terms of r and the amplitude of
the primordial scalar power spectrum at CMB scales, estimated by Planck [57]. In this way
we can combine constraints on r and nT from the CMB scales with constraints to ⌦GW(f)
and nT from direct detection experiments, in particular obtained by current constraints from
aLIGO, and with those expected by LISA. Up to now a constraint nT = 0.06+0.63

�0.89 at 95%
C.L. [77] has been found2 combining BICEP2/Keck Array and Planck (BKP), Planck 2013,
WMAP low ` polarization, HST data, Barion Acoustic Oscillations (BAO) measurements
from SDSS and the upper limit on the energy density of stochastic GW background from
LIGO. The most recent constraint on the tensor-to-scalar ratio provided by BKP and other
data gives r0.05 < 0.07 (95% C.L.), at 0.05 Mpc�1 [78], assuming the consistency relation of
eq. (1.4) [r = �8nT ] of single-field slow-roll models of inflation.

Recently, it has been shown how CMB experiments alone are not able to put strong con-
straints on the spectral tilt, finding nT . 5 at 95% C.L. for r0.01 = 0.02 [79], even in the case
of a detection of B-modes. CMB experiments focus on a narrow range of frequency around
10�17Hz; so, it becomes clear the importance of the combination of several experiments that

2This constraint is determined assuming a hypothetical detection of a tensor-to-scalar ratio at 0.01Mpc�1

of r0.01 = 0.02.
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Figure 2. For a power-law stochastic background of the form ⌦gw = A(f/f⇤)nT , the shaded
regions represent the detectable regions in the (nT , A) parameter space visible by the six
LISA configurations under analysis: red A5M5, red dashed A5M2, blue A2M5, blue dashed
A2M2, green A1M5, green dashed A1M2. We have chosen six representative pivot frequencies,
f⇤ = 0.05 , 0.5 , 3 , 5 , 50 , 100 mHz.

cover di↵erent range of scales. In [79, 80] it has been pointed out how the combination of
GW experiments on a large range of frequencies, including ground and space-based inter-
ferometers, indirect measurements from CMB, BAO, and Big Bang Nucleosynthesis (BBN),
puts stronger constraints on the tensor spectral index. In light of this we forecast the ability
of LISA to obtain constraints on the spectral tilt nT , considering r consistent with the cur-
rent CMB upper bound. We repeat the analysis performed to obtain figure 2, relating the
amplitude A with the tensor-to-scalar ratio r, and f⇤ = fCMB = 7.7 ·10�17 Hz (corresponding
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Figure 3. Limits on the tensor spectral tilt nT and the tensor-to-scalar ratio r for the six LISA
configurations listed in table 1, assuming a power-law spectrum (1.3) (with arbitrary nT , not (1.4))
with reference scale k⇤ = 0.05Mpc�1. This highlights the ability of LISA to test the r�nT relation.

to the reference scale k⇤ = 0.05Mpc�1), for the six LISA configurations under analysis. The
results are shown in figure 3, where we can see that assuming the best LISA configuration
with 6 links, 5 million km arm length and 5 year mission, we can constrain the spectral
index up to nT . 0.15. This number can be compared with the bound coming from initial
LIGO O1, nT < 0.54 at 95%C.L. at a reference value r0.05 = 0.11 [79]. It becomes clear
that this ability of LISA to constrain the tensor spectral tilt, becomes also a test for (strong)
deviations of the consistency relation nT = �r/8 < 0. In fact, as we know that all single-field
slow-roll models of inflation follow the consistency relation, any evidence of a blue tilt nT > 0
(necessary for a detection at the LISA frequencies), would be an indication of a deviation
from single-field slow-roll models. As we will see in the next sections, this ability of LISA,
is extremely flexible so it can be used for the di↵erent scenarios taken into account to put
constraints on the related parameter space.

3 Particle production during inflation

Requirements of radiative stability play a crucial role in the construction of models of inflation,
as they help discriminating between technically natural potentials, for which the properties
in the full quantum theory are close, in a controllable way, to those of the classical theory,
and models that require some form of fine tuning of the parameters. The most popular way
of ensuring radiative stability of a scalar potential such as that of the inflaton � is to assume
a (softly broken) shift symmetry, i.e. an invariance under the transformation �! �+�0 with
�0 an arbitrary constant. One of the very few operators of low dimension that are allowed
by an exact shift symmetry is the axionic coupling of the inflaton to a U(1) gauge field,

�L = � 1

4 f
�Fµ⌫ F̃

µ⌫ , (3.1)

where 1/f is a coupling constant with the dimension of a length. The operator (3.1) is
thus expected to be generated in a large of class of technically natural models of inflation.
Moreover, it leads to a very rich phenomenology. In fact, the equation of motion of the
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±1-helicity modes A±(k, ⌧) of the gauge field, in the presence of a time-dependent inflaton
�(t), reads [81]

d2A±(k, ⌧)

d⌧2
+


k2 ± 2 ⇠

k

⌧

�
A±(k, ⌧) = 0 , (3.2)

where we have defined

⇠ ⌘ �̇

2 f H
, (3.3)

and where ⌧ denotes conformal time, whereas �̇ is the derivative of the inflaton expectation
value with respect to cosmic time t, and H is the Hubble parameter. The presence of the ±
sign in eq. (3.2) implies that for long wavelengths �k ⌧ < 2 ⇠ one of the two helicity modes
is exponentially amplified. More specifically, an exact solution [81] of eq. (3.2) for constant
⇠ shows that only the mode A+ is amplified by a factor ⇠ e⇡ ⇠ for3 ⇠ & O(1). Here we
assume (without loss of generality) that ⇠ > 0, so that only positive helicity photons are
amplified. The fact that only one of the photon helicities is amplified is reminiscent of the
parity-violating nature of the operator (3.1) in the presence of �̇ 6= 0.

The exponentially large mode functions of one of the helicities of the gauge field act in
their turn as a source of scalar perturbations (related to the perturbations in the inflaton,
��) and of gravitational waves �g, through processes A + A ! �� and A + A ! �g. Since
the photon modes result from the amplification of Gaussian vacuum modes, and since ��
and �g are sourced by 2 ! 1 processes, the scalar and tensor perturbations sourced by the
photons satisfy fully non-Gaussian statistics (i.e., their three point function is given, up to
O(1) factors, by their two point function to the power 3/2). The bispectrum of the sourced
scalar perturbations has an approximate equilateral shape, with [82]4

f equil
NL ' 7.1⇥ 105

H6

|�̇|3
e6⇡ ⇠

⇠9
, (3.4)

so that the non-observation of scalar non-Gaussianities by the Planck experiment at cos-
mological scales (that correspond to frequencies of the order of 10�17 Hz) implies a strong
constraint ⇠ . 2.5 at 95% C.L. at those scales [57, 83]. For such small values of ⇠, the sourced
gravitational waves are very weak and unobservable, see eq. (3.10) and (3.15) below.

However, the quantity ⇠ is time dependent [84], which leads to a scale dependent spec-
trum of photons, and thus to a scale dependent spectrum of sourced metric perturbations.
Remarkably, the quantity ⇠ will generally increase as we go to shorter scales, since |�̇| in-
creases and H decreases as we approach the end of inflation. It is therefore possible that ⇠
was smaller than 2.5 or so when CMB scales left the horizon, so that the Planck constraints
on non-Gaussianity and on the growth of the power spectrum [85] are satisfied [57], but

3It is worth noting that in slow-roll inflation with negligible back reaction of the gauge field, ⇠ = MPl
f

q
✏�
2 ,

where ✏� ⌘ �̇2

2H2M2
Pl
, see eq. (3.17) below. Therefore, unless inflation happens at a very low scale (so that

COBE normalization implies that ✏ ' ✏� is many orders of magnitude below unity), a value of f within an
order of magnitude or two from MPl will lead to a value of ⇠ & O(1).

4Loosely speaking, the non-linear parameter is defined by noting that the primordial curvature pertur-
bations ⇣ are extremely close to Gaussian, and by parametrizing the departure from non-Gaussianity as
⇣ = ⇣g + 3

5fNL⇣
2
g , where ⇣g is a Gaussian field; the precise relation is di↵erent for di↵erent shapes of non-

Gaussianity; see for instance [82] for a more precise definition.
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then grew to larger values later, when scales probed by LISA were amplified. Note that the
evolution of ⇠ as a function of time depends on the specific form of the inflaton potential.
Moreover, it will also depend on the amount of back reaction of the produced photons on the
rolling inflaton.

In this section we will discuss the prospects of detectability of these gravitational waves
by LISA. In subsection 3.1 we provide a quick summary of the main properties of the system.
In subsection 3.2 we will use a local approach, parametrizing the dynamics that a↵ect only
LISA scales to determine the properties of the gravitational waves generated by this mecha-
nism. In subsection 3.3, on the other hand, we will deal with the constraints that emerge by
considering the dynamics of the system during the entire observable ⇠ 60 e-folds of inflation.
Finally, in Subection 3.4 we discuss some additional potential constraints on the parameter
space of the model.

3.1 The spectrum of gravitational waves

For ⇠ & O(1) the spectrum of gravitational waves is well approximated by [82, 86]

PGW (k) ⌘ k3

2⇡2

X

i=±
|hi (k)|2

= PGW,vacuum (k) + PGW,sourced (k)

' 2H2

⇡2M2
Pl

+ 8.7 · 10�8 H4

M4
Pl

e4⇡⇠

⇠6
. (3.5)

In this expression, h± denote the wave functions of two helicity modes + and � of a grav-
itational wave. The quantity k denotes the wave number (or, equivalently, the comoving
momentum) of the mode. Although we have not indicated it explicitly, the last expressions
depends on k since the values of H and ⇠ need to be evaluated when a given mode left the
horizon during inflation. The GWs in these models are a sum of the “vacuum” gravitational
waves (namely, those amplified by the expansion of the Universe; this is the standard term
present in any model of inflation, which has an amplitude proportional to the Hubble rate)
plus the “sourced” gravitational waves (namely, those produced by the vector modes through
a A+A ! �g processes). The two terms are statistically uncorrelated, so that the total GW
power spectrum is the power spectra of these two terms, without interference.

Figure 4 shows the energy in gravitational waves as a function of frequency for f =
MPl/35 in the case of a quadratic inflaton potential. One can notice three di↵erent regimes:
(i) at large scales (f . 10�5 Hz in figure 4) the “standard” contribution from the amplification
of vacuum fluctuations of the graviton PGW,vacuum dominates over the sourced contribution;
(ii) at intermediate scales (10�5 Hz. f . 1 Hz in figure 4) the sourced gravitational waves
dominate, but the back reaction of the amplified gauge modes on the inflating background is
negligible, so that the time-dependence of �̇ and H is determined by the standard slow-roll
equations; (iii) at smaller scales (f & 1 Hz in figure 4) the back reaction of the photons on
the inflaton cannot be neglected any more. Since the production of photons draws energy
from the kinetic term of the inflaton, it has the e↵ect of slowing down the increase of |�̇|,
resulting into a flattening of ⌦GW h2 as a function of the frequency f at smaller scales.

It is also worth noting that in the simplest scenarios (|�̇| monotonically increasing, H
monotonically decreasing) the spectrum of sourced gravitational waves is generally blue. It
is however possible to consider situations where ⇠ has a transient, resulting into a localized
bump in the spectrum of tensors [87, 88].
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Besides the amplitude (3.5) of the GW power spectrum, it is worth mentioning
that this background has two very distinctive properties, namely its chirality and its
non-Gaussian statistics:

• Parity violation. Eq. (3.5) gives the total power in gravitational waves. This is given by
the sum of the individual powers in left- and right-handed gravitational waves, which
are given by [86]

P+
GW,sourced ' 8.7 · 10�8 H4

M4
Pl

e4⇡⇠

⇠6
,

P�
GW,sourced ' 1.8 · 10�10 H4

M4
Pl

e4⇡⇠

⇠6
. (3.6)

The di↵erence in amplitude between the spectra of the left- and the right-handed
gravitational waves is a sign of the parity-violating nature of the system. The resulting
GW background is therefore highly chiral, which represents a very distinctive signature
of this scenario. Strategies for detecting a stochastic background of chiral gravitational
waves with Earth-based detectors were discussed in [89].

• The three point function. As discussed above, all the metric perturbations sourced
by the modes of the gauge field obey non-Gaussian statistics. Also the spectrum of
gravitational waves enjoys this property. The three point function of the gravitational
wave in this scenario, in the case of constant ⇠, was computed in [90]. The shape of the
three point function is close to equilateral, and in the exact equilateral configuration,
|k1| = |k2| = |k3| = k, it is given by

hĥ+(k1) ĥ+(k2) ĥ+(k3)iequil = 6.1⇥ 10�10 H6

M6
Pl

e6⇡⇠

⇠9
�(3)(k1 + k2 + k3)

k6
, (3.7)

which, as mentioned above, is approximately given by the two-point function, eq. (3.5),
to the power 3/2. Constraints on the tensor bispectrum of eq. (3.7) have already been
obtained from the CMB bispectrum [83], yielding a constraint on the parameter ⇠
on CMB scales in agreement with the one obtained from the measurements of CMB
scalar bispectrum (3.4). Possible detectability of non-Gaussian primordial gravitational
waves at interferometers has been discussed in [91]. The one-to-one correspondence
of the amplitude of the signal (3.5) and its three-point function (3.7) represents a
characteristic signature of this scenario.

To summarize, the mechanism of field amplification from the coupling (3.1) is extremely
interesting since (i) it is inherent to well motivated models of inflation, and (ii) it naturally
leads to a signal that grows with time during inflation, allowing to probe stages of inflation
that occurred well after the CMB modes were produced, on which we currently have little
or no experimental information. A stochastic GW background produced by this mechanism
would have very characteristic properties that could allow to distinguish it from an astrophys-
ical background: it is chiral, it is highly non-Gaussian, and it is characterized by a universal
and scale-independent ratio between the three- and two-point function,

k6 hh3i0equil ' 23P 3/2
GW , (3.8)

(where prime denotes the correlator without the delta-function). Finally, it has typically a
significant blue spectrum at LISA scales, as we discuss in the next section.
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3.2 Local parametrization

As can be seen from eq. (3.5), at large ⇠ the sourced GWs dominate over the vacuum ones,

PGW ' PGW,sourced,L ' 8.7 · 10�8 H4

M4
Pl

e4⇡⇠

⇠6
, ⇠ � 1 . (3.9)

The power spectrum is related to the fractional GW energy density by [92] ⌦GWh2 =
⌦R,0h

2

24 PGW, where ⌦R,0h
2 ⌘ ⇢R,0h

2/3H2
0M

2
Pl ' 4.18 · 10�5 refers to radiation nowadays

(one needs to include also the neutrinos as if they were still relativistic today). Therefore

⌦GWh2 ' 1.5 · 10�13 H4

M4
Pl

e4⇡⇠

⇠6
, ⇠ � 1 . (3.10)

In this expression, H and ⇠ need to be evaluated when a mode left the horizon, and they are
therefore functions of the wavenumber k, or, equivalently, of the frequency f = k/2⇡ of the
mode. The frequency is related to the number of e-folds by5

N = NCMB + ln
kCMB

0.002Mpc�1 � 40.3� ln

✓
f

Hz

◆
+ ln

✓
HN

HCMB

◆

' 19.7� ln

✓
f

Hz

◆
+ ln

✓
HN

H60

◆
, (3.11)

where in the second expression we have assumed that the Planck pivot scale kCMB =
0.002Mpc�1 exited the horizon at NCMB = 60. At any value of the frequency we define
the spectral tilt

nT (f) ⌘ d ln⌦GWh2

d ln f
, (3.12)

which gives ⌦GWh2 / fnT in the case of constant nT . Di↵erentiating eqs. (3.10) and (3.11),
and using dN = �H dt, we obtain

nT =

 
4Ḣ

H2
+

4⇡⇠̇

H
� 6⇠̇

H⇠

! 
1 +

Ḣ

H2

!�1

=
�4✏+ (4⇡⇠ � 6) (✏� ⌘)

1� ✏
' �4✏+ (4⇡⇠ � 6) (✏� ⌘) , (3.13)

where in the first expression dot denotes di↵erentiation with respect to cosmic time, and
where in the second expression we have used the slow-roll parameters

✏ ⌘ � Ḣ

H2
, ⌘ ⌘ � �̈

H�̇
. (3.14)

In the limit of negligible negligible back reaction of the gauge field on the background dy-
namics, ✏ and ⌘ become the two combinations ✏ ! ✏V and ⌘ ! ⌘V � ✏V of the slow-roll

parameters ✏V ⌘ M2
Pl
2

⇣
V 0

V

⌘2
, ⌘V ⌘ M2

Pl
V 00

V defined from the inflaton potential.

5To derive this relation, we used the fact that, by definition, a mode crosses the horizon when k = aH,
and we have taken the ratio kCMB

kN
= aCMBHCMB

aNHN
, where kN and aN are the wavenumber and scale factor at

Hubble radius crossing N -folds before the end of inflation.
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Figure 4. Spectrum of GWs today h2⌦GW obtained from a numerical integration of the dynamical
equations of motion (for a model of quadratic inflaton potential, with inflaton - gauge field coupling
f = MPl/35), versus the local parametrization h2⌦GW / (f/f⇤)nT , evaluated at various pivot fre-
quencies f⇤ and with the spectral tilt nT obtained from successive approximations to the analytic
expression (3.13).

In figure 4, we compare the analytic expression (3.13) for the spectral tilt nT against the
result of a numerical evolution of ⌦GWh2. For definiteness, we choose a quadratic inflaton
potential, and we fix the coupling between the gauge field and the inflaton to f = MPl/35.
This gives ⇠N=60 ' 2.46 at the CMB scales. We observe from the figure that the final
expression for the tilt in (3.13) provides a very good approximation (red segments in the
figure) to the slope of the numerical result (blue solid line in the figure). The term (1� ✏) in
the denominator of (3.13), due to the fractional change of the Hubble rate Ḣ/H2, contributes
to nT only to second order in slow-roll parameters, and hence we disregard it. The expression
nT ' �4✏+ (4⇡⇠ � 6)(✏� ⌘) predicts correctly the slope of the numerical signal, within the
LISA frequency range, to better than ⇠ 4%. In the figure, the di↵erence between the red
segments and the true numerical signal cannot be distinguished by eye.

Let us note that for the range of ⇠ that LISA can probe [⇠ & 3.5, see figure (5)], the
term �4✏ in the final expression of (3.13) is actually negligible compared to the other terms.
We can thus further approximate the expression for the tilt as nT ' (4⇡⇠ � 6) (✏� ⌘), which
still predicts correctly the slope of the numerical signal within the LISA frequency range,
for instance in the fiducial chaotic quadratic model to better than ⇠ 10%. The advantage
of using this simplified expression for the tilt is that it allows us to reduce the number of
independent variables that the GW signal depends on, from {HN , ⇠, ✏, ⌘} to {HN , ⇠, (✏� ⌘)}.
This simplifies our next goal, which is to obtain a model-independent parameter estimation
based on the LISA sensitivity curves.

In figure 5 we plot the region in the parameter space (⇠, ✏ � ⌘) that LISA is capa-
ble of probing, with the left and right panels depicting, LISA’s best (A5M5) and worst
(A1M2) configurations, respectively. In both panels we take as a pivot scale f⇤ the frequency

of the minimum of each LISA sensitivity curve h2⌦(AiMj)
GW (f), with f⇤|A5M5 ' 0.00346 Hz
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Figure 5. Region in the (⇠, ✏�⌘) parameter space that LISA can probe, in the best configuration (left
panel) and in the worst configuration (right panel). As a reference, we include the points corresponding
to quadratic chaotic inflation for inflaton-gauge field coupling MPl/f = 35, 34, 33, 32 and 31. Note
that the spectral index nT , not shown in the figures to avoid to overcrowd them, is well approximated
by the simple formula nT ' (4⇡⇠ � 6) (✏� ⌘).

and f⇤|A1M2 ' 0.00390 Hz. We then compute the minimum value ⇠ required for a GW
signal h2⌦GW(⇠; f⇤) to be above the minimum of the sensitivity curve, i.e. h2⌦GW(⇠ �
⇠min; f⇤|AiMj ) � h2⌦(AiMj)

GW (f⇤|AiMj ). For su�ciently small slow-roll parameters, (✏�⌘) ⌧ 0.1,
the answer is independent of the spectral tilt of the signal, and hence independent of the slow-
roll parameters. This explains the horizontal lines marked as ⇠min in the plot. Of course, ⇠min

depends on the inflationary Hubble scale H⇤, evaluated at the e-fold N⇤ corresponding to the
pivot scale f⇤, see (3.11). In the two panels we also depict, as a reference, the (⇠, ✏� ⌘) be-
havior for our fiducial quadratic inflation model, evaluated numerically for 30 . MPl/f  35.
The Hubble rate in chaotic inflation with a quadratic potential at the e-fold N⇤ ⇠ 25 (corre-
sponding to the frequencies f⇤|AiMj ) is Hc ⇠ 2.6 ·10�5MPl ' 6.4 ·1013GeV. Taking this value
as a reference, we see that LISA cannot probe any Hubble rate smaller than ⇠ O(10�2)Hc,
as a too large ⇠min is in tension with perturbativity requirements [93]. In particular, if we
take ⇠min = 5.5 as the maximum tolerated value at N⇤ ' 25, the minimum Hubble rate that

can be probed by the di↵erent LISA configurations ranges from H
(A5M5)
min ' 6.3 · 1011GeV to

H
(A1M2)
min ' 1.5 · 1012GeV.

When the slow-roll parameters are su�ciently large, it becomes possible that a GW
signal with an amplitude at the pivot scale f = f⇤|AiMj smaller than the corresponding

LISA sensitivity curve, i.e. h2⌦GW(f⇤|AiMj ) < h2⌦(AiMj)
GW (f⇤|AiMj ), is yet observed thanks to

its large spectral tilt nT . Of course, having a scenario capable of producing such a signal
becomes more and more contrived the larger the slow-roll parameters: having large slow-
roll parameters at N⇤ ⇠ 25 requires a more complicated inflaton potential to sustain the
final number e-folds of inflation, and also a GW background with such a large tilt requires
a mechanism to prevent any further growth of the GW amplitude at higher frequencies,
otherwise this would violate the BBN bound [see eq. (3.23)]. For simplicity, we will restrict
ourselves to (✏� ⌘)  0.1, with (✏� ⌘) = 0.1 already quite a large value. Considering a GW
signal with amplitude smaller than the LISA sensitivity curve at the corresponding frequency
of the minimum f = f⇤|AiMj , we find the minimum tilt nT , and hence the minimum slow-roll
parameter combination (✏� ⌘)min, required for the amplitude of the signal to cross the LISA
curve at a higher frequency f > f⇤|AiMj . For simplicity, we have measured the slope of the
LISA sensitivity curves at a frequency f = 10 · f⇤|AiMj , which we refer to as nt,AiMj . For
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Figure 6. Regions in the ⇠ �H parameter space that LISA can probe for the best (blue region) and
worst (pink region) configurations. In the left panel we show the parameter space for (✏� ⌘) = 0.02,
whereas in the right panel we show it for (✏� ⌘) = 0.1.

GW signals with amplitude h2⌦GW(f⇤|AiMj ) < h2⌦(AiMj)
GW (f⇤|AiMj ) at f = f⇤|AiMj , we impose

nT � nt,AiMj , and from the equality we obtain the dashed curve shown in both panels of
figure 5,

⇠ � 1

4⇡

✓
nt,AiMj

(✏� ⌘)
+ 6

◆
. (3.15)

For (✏� ⌘) = 0.1 and for a Hubble rate as large as the one in chaotic inflation fiducial model,
H = Hc, we deduce that ⇠ � ⇠min,0.1, with ⇠min,0.1 ' 3.58 for A5M5 and ⇠min,0.1 ' 3.66 for
A1M2. Note that in deriving (3.15) we have used the simplified expression nT ' (4⇡⇠�6)(✏�
⌘), neglecting the �4✏ contribution. As (3.15) is only valid for a large slow roll parameter
combination (✏�⌘) � 0.06 [see curves at large (✏�⌘) in figure (5)], one should take the shape
given in that equation only as representative indication of the e↵ect of having a GW signal
at f⇤|AiMj below the LISA sensitivity threshold. The exact form will depend on the exact
scenario, and it is possible that the �4✏ corrections may change to some extent the form
of (3.15). However, at the qualitative level, (3.15) shows precisely what is expected, that for
GW signals below the LISA sensitivity at f = f⇤|AiMj , the minimum ⇠ required to probe the
signal with LISA is slightly smaller than the asymptotic constant ⇠min values obtained for
small (✏� ⌘) values.

Finally, we can also use the local parametrization to obtain contour regions in the (⇠, H)
plane of parameters, for fixed values of (✏� ⌘). This does not contain more information than
figure (5), but it allows for an easy visualization of the ability of LISA to measure ⇠ as
a function of the Hubble rate H. We take again, as a reference, the Hubble rate Hc '
6.4 · 1013GeV at the e-fold N⇤ ⇠ 25 corresponding to LISA detection threshold (minimum of
the sensitivity curves). We measure the Hubble rate in units of H/Hc. For a su�ciently small
slow-roll parameter combination, say (✏ � ⌘) < 0.05 we are safely in the asymptotic regime
where we just need ⇠ > ⇠min to guarantee a detection by LISA, independently of the actual
value of (✏� ⌘). In figure 6 we show the region of the (⇠, H/Hc) parameter space compatible
with a detection by LISA, for (✏�⌘) = 0.02 in the left panel, and for (✏�⌘) = 0.1 in the right

– 16 –



J
C
A
P
1
2
(
2
0
1
6
)
0
2
6

panel. In each panel we show the region probed by the best and the worst configurations,
A5M5 and A1M2. The two panels show clearly the degradation of LISA’s ability to measure
a signal for small inflationary Hubble rates, as the minimum ⇠ required for a detection grows
exponentially fast as the Hubble rate decreases.

To conclude our discussion on the local parametrization, let us note the following.
When looking at figures 5, 6, one might be led to (misleadingly) conclude that LISA’s best
configuration (A5M5) does not represent much of an improvement compared to the worst
configurations (A1M2), as the di↵erence in ⇠ probed by the two configuration is rather
small, of the order �⇠ ⇠ 0.31. The di↵erence in the amplitude of the GW probed by both
configurations is however much larger, since the GW signal has an exponential sensitivity to
⇠ as ⌦GW / e4⇡⇠. A small di↵erence �⇠ ⇠ 0.31 translates therefore into a GW amplitude
boost factor of ⇠ e3.9 ⇠ 102. In other words, being capable of distinguishing small di↵erences
in ⇠ is in fact quite relevant, as it may represent the di↵erence between detecting and not
detecting a given GW signal.

3.3 Global parametrization

The local parametrization discussed in the previous subsection can be used to study the
phenomenology of an inflation model containing the coupling (3.1) within a given observa-
tional window (in our case, the band of frequencies to which LISA is sensitive), while being
agnostic about the inflaton potential at field values that do not impact these scales. This
method focuses on what one can observe in a given experiment, making as few theoretical
assumptions as possible about scales which cannot be probed in that experiment. This is
for example similar to the reconstruction of the inflaton potential for a limited range of field
values that can be done with CMB observations.

On the other hand, one may also choose to specify an inflaton potential, and combine
the phenomenology associated to the interaction (3.1) at many di↵erent scales during the
full observable ⇠ 60 e-folds of inflation. To analyze these e↵ects (and to ensure that for
simple inflation models one can indeed have an observable signal in the LISA band without
violating any other constraints) we follow the approach of ref. [94]. Among the countless
inflation models on the market, a vast amount of the single-field inflation models can be
(approximately) described by the following ansatz for the first slow-roll parameter [95],

✏V =
1

2

✓
V,�

V

◆2

=
�

Np
, (3.16)

thereby classifying inflation models into universality classes according to their value of p.
Here � is typically an O(1) parameter, in the case of chaotic inflation it is e.g. related to
the power of the inflaton field. This ansatz can be seen as the leading term in an expansion
in the number of e-folds from the end of inflation N , following the observation that at the
CMB-scales (N ⇠ 60) the slow-roll parameters are measured to be very small, whereas they
need to become large at the end of inflation (N = 0) to guarantee a graceful exit. The
ansatz (3.16) covers a wide range of well-motivated inflation models such as chaotic inflation
(p = 1), supersymmetric hybrid inflation (p = 1), Starobinsky inflation (p = 2) and hilltop
inflation (p > 2). Starting from eq. (3.16), the corresponding scalar potential is uniquely
determined up to a constant of integration V0 which determines the overall normalizaton
of the potential [95]. As a result, starting from eq. (3.16), the entire inflationary dynamics
including the full scalar and tensor perturbation spectra are determined by four parameters
only: f , p, � and V0.
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In ref. [94], it was found that among the discrete values of p studied, p = {1, 2, 3, 4}, the
most promising candidates for future observations are the Starobinsky class (p = 2) followed
by the chaotic class (p = 1). This is due to two competing e↵ects which sensitively depend
on p. Firstly, as long as the back reaction of the gauge fields is negligible,

⇠ ' MPlp
2 f

p
✏V / N�p/2 . (3.17)

Since the GW spectrum depends exponentially on the parameter ⇠, this implies that the
growth of the spectrum towards higher frequencies is much faster for larger values of p -
and hence these large-p models are more likely to yield an observable GW signal. However
secondly, for p > 1, eq. (3.16) implies [95]

ns ' 1� p

N + 1
. (3.18)

Hence models with a large value of p tend to have a too low spectral index, a situation which
is aggravated in the presence of a sizable pseudoscalar coupling to gauge fields: the e↵ective
friction term in the equation of motion for the inflaton implies that the CMB observables are
evaluated further down the scalar potential (compared to the situation in absence of (3.1)),
thus further decreasing the spectral index. When combining these two e↵ects, the p = 2
case was found to yield the largest GW signal while respecting the constraints on the CMB
observables.

In light of these results, we focus here on two representative examples: the chaotic class
(p = 1) and the Starobinsky class (p = 2):

chaotic (p = 1) : V (�) = V0�
� ! � = �/4 , (3.19)

Starobinsky (p = 2) : V (�) = V0(1� e���)2 ! � = 1/(2�2) . (3.20)

Of the remaining three parameters (f , � and V0) one parameter can be eliminated by imposing
the COBE normalization on the amplitude of the scalar perturbation spectrum at the CMB
scale. In figures 7 and 8 we depict a selection of CMB observables as well as the amplitude
and tilt of the GW spectrum in the LISA band in terms of the two remaining parameters �
and f .

The relevent CMB observables are the scalar amplitude As, its spectral tilt ns, the tensor
to scalar ratio r, the equilateral non-Gaussianity parameter f equil

NL (see eq. (3.4)) and the level
of µ-distortion in the CMB black body spectrum. These µ-distortions are sensitive to the
integrated scalar power spectrum in the range 50 Mpc�1 . k . 104 Mpc�1, corresponding
to a frequency range of 10�15 Hz . f . 10�9 Hz [85],

µ '
Z kD(zf )

kD(zi)
d ln k As(k)

h
e�k/kD(z)

izf
zi

, (3.21)

with kD = 4⇥10�6z3/2 Mpc�1 and zi = 2⇥106 (zf = 5⇥104) denoting the redshift when the
dominant inelastic (elastic) scattering processes for CMB photons freeze out. The current
bound from COBE / FIRAS constrains µ < 6⇥ 10�8 [96] at 95% CL. The CMB observables
As, ns and r are evaluated in the usual way, taking into account the reduced field excursion of
the inflaton due to the gauge friction term. The GW amplitude and tilt are evaluated at the
LISA peak sensitivity, f ⇠ 4⇥ 10�3 Hz. We have furthermore evaluated the GW amplitude
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(a) CMB constraints and LISA sensitivity (b) Spectral tilt

Figure 7. Left panel: reach of the A5M5 (yellow) and A1M2 (orange) LISA configurations, compared
to region of parameter space probed by the CMB. The non-observation of non-Gaussianities and µ-
distortions in the CMB excludes the region on the top right (⇠CMB > 2.5), whereas the gray region
is is excluded at 95% CL by the CMB constraints on ns and r. Right panel: spectral tilt of the GW
spectrum in the same parameter space. For reference, the dashed yellow (orange) line show the reach
of the A5M5 (A1M2) LISA configuration.

in the LIGO band, however the current bound [97] does not constrain the parameter space
any further. See ref. [94] for details.

Figure 7 shows the results for the chaotic inflation models. The yellow/orange shaded
regions in the left panel show the reach of LISA (best and worst configuration). The dotted
and dashed lines show contours of the tensor-to-scalar ratio r and spectral index ns, respec-
tively, with the gray shaded region disfavoured at 95% CL by the Planck data [57, 83]. In
the gray region on the left of the plot this is mainly due to too large values of the spec-
tral index, whereas the grey region on the right is mainly driven by the large values of the
tensor-to-scalar ratio. The white region on the top right is excluded as it produces too large
non-Gaussianities (the bound arising from µ-distortions is slightly weaker). Together, this
emphasizes the powerful complementarity between CMB experiments and direct gravitational
wave detectors.

The right panel of figure 7 is dedicated to the tilt of the tensor power spectrum. For
reference, we show again the region excluded by the CMB constraint on non-Gaussianity
and µ-distortions (white region on the top right) and the reach of the best and worst LISA
configuration (dashed yellow and dashed orange). There is a clear correlation between the
amplitude and the tilt of the GW spectrum in the LISA band. For example (at � = 1.0), for
a GW amplitude which is marginally detectable by the best (worst) LISA configuration, we
find a prediction of nT ' 1.21 (1.20), while for a GW amplitude just below the current non-
Gaussianity bound, we find nT ' 0.8. The strong correlation between the GW amplitude,
the tilt and size of the non-Gaussianities can be traced back to the parameter ⇠, which is the
main parameter dependence of all these quantities.
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(a) CMB constraints and LISA sensitivity (b) Spectral tilt

Figure 8. Left panel: reach of the best (yellow) and worst (orange) LISA configuration, compared
to region of parameter space probed by the CMB. Adapted from ref. [94]. Right panel: spectral tilt
of the GW spectrum in the same parameter space. Color coding as in figure 7.

Figure 8 shows the analogous analysis for the Starobinksy class of models. As in figure 7,
the left panel is dedicated to contrasting the CMB constraints with the reach of LISA, whereas
the right panel shows the spectral tilt of the GW spectrum. Contrary to the case discussed
above, the entire parameter region shown is now within the 95% CL contour of the Planck
ns�r - data [57]. The white region on the top left is excluded by bounds on non-Gaussianities
and µ-distortions, where in this case the latter yield the slighter stronger bound. Again we
observe that the spectral tilt and the amplitude are highly correlated. However, due to the
larger value of p in this case, the growth of the GW spectrum is steeper and hence the
maximal spectral tilt is larger. For example (at � = 0.5), a spectrum marginally detectable
with the best (worst) LISA configuration corresponds to a spectral tilt of nT ' 3.2 (2.8),
whereas just below the non-Gaussianity bound we find nT ' 0.2.

In summary, we stress the remarkable complementarity between the CMB observables
ns, r, f

equil
NL , µ and the parameter range probed by direct GW searches. In both the chaotic

and the Starobinsky class of models, this allows to constrain the parameter space from di↵er-
ent sides. Moreover, the spectral tilt nT is found to be an approximately universal function
of the amplitude ⌦GW(f) within a given universality class, while functioning as a discrimina-
tor between di↵erent universality classes. Finally, in both cases studied, the absolute value
of the spectral tilt immediately indicates if the LISA band lies in the saturation regime of
strong back reaction (nT = O(0.1)), in the regime of dominated by the vacuum fluctuations
(nT . 0) or in the intermediate regime featuring a highly blue spectrum (nT = O(1)).

3.4 Other constraints

Beyond the GW signal and the constraints on the CMB observables f equil, ns, r and µ
discussed above, there are a number of further potentially observable features of this class of
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models. In this subsection, we compare the potential of these channels to probe the parameter
space to the reach of LISA.

• Primordial black holes (PBHs). The gauge fields amplified by the interaction (3.1)
source both gravitational waves and scalar density perturbations. Due to their non-
gaussian nature, sourced scalar perturbations with amplitude As = O

�
10�4 � 10�3

�

(the precise value depending on the scale) can lead to PBHs [98] in excess to the current
bounds [99, 100]. Ref. [98] showed that, for a chaotic inflationary potential, these limits
force the gauge field amplification to be too small for the sourced gravitational waves
to be observable at interferometers. This conclusion requires several qualifications, as
we now discuss.

The study of scalar perturbations of [98] is based on the approximate equation [101]

��̈+ 3�H ��̇+ k2��+ V 00�� '
~E · ~B � h ~E · ~Bi

f
, (3.22)

with � ⌘ 1 � 2⇡⇠
f

h ~E· ~Bi
3H'̇ . The right hand side of this relation accounts for the inverse

decay process �A + �A ! ��. The departure of � from 1 is due to the fact that the
amplitude of the vector field depends on ⇠, which, being proportional to �̇, receives
corrections from the time derivative of the inflation perturbations, �⇠ = �⇠

�(��̇)
��̇. This

introduces a damping on the growth of the inflaton perturbations, which is analogous to
the friction that the gauge fields cause to the background evolution of the inflaton. This
e↵ect is significant for the values of ⇠ necessary to produce PBHs. As remarked in [98],
it is possible that, when this happens, additional interactions between the inflaton and
gauge field perturbations, which are not included in (3.22), become important. If it
is the case, all conclusions on the scalar perturbations in this regime are a↵ected by
a O (1) uncertainty, which can be enough to make the PBHs limit unimportant [98].
Ref. [102] proposed some conditions for the validity of perturbative computations of
the scalar perturbations in this model. The conditions were re-analyzed in [93], which
showed that these criteria are satisfied for ⇠ . 4.8. This is parametrically close to the
values necessary to generate PBHs, so that O (1) corrections are certainly a possibility.

Beside the intrinsic uncertainty associated with (3.22) in the ⇠ � 1 regime, one should
also keep in mind that the PBH limit of [98] is enforced by modes at the smallest
possible scales at which these limits exist, namely N ' 10. This is due to the fact that
⇠ / �̇/H continues to grow in chaotic inflation, resulting in very blue spectra for the
sourced perturbations. LISA is mostly sensitive to modes at much greater scales, with
the best sensitivity for N ⇠ 25. The PBHs limit at LISA scales does not preclude the
GW signal to be large enough to be visible at LISA, and it is possible that, in a di↵erent
model from chaotic inflation, the inflaton potential causes the inflaton to slow down
between N = 25 and N = 10, so that the PBHs bounds are never evaded [88]. Finally,
the PBHs limit can be easily evaded if a number N > 1 of gauge fields are amplified by
this mechanism. The di↵erent gauge fields act as an incoherent source, that amplifies
the gravitational wave spectrum by a factor of N . The same amplification takes place
for the scalar modes. However, the parameter � in (3.22) also grows by a factor of N
in the ⇠ � 1 regime, giving rise to a 1/N 2 suppression to the scalar power spectrum.
Altogether, the scalar power spectrum is therefore suppressed by a 1/N factor [101].
As a consequence, the ratio between the tensor and scalar perturbations grows as N 2,
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so, that, at su�ciently large N , one can be sure to obtain a su�ciently large GW
signal and su�ciently few PBHs. In fact, for models of chaotic (Starobinsky) inflation,
already at N = 5 (N = 10), one can obtain a visible GW at LISA without violating
the PBHs limit [88, 94].

• The e↵ective number of massless degrees of freedom Ne↵ at the the time of BBN and
of CMB decoupling. Since GWs contribute to the radiation energy density, the high-
frequency part of the spectrum is constrained by

Z
d(ln f)⌦GW  ⌦R,0

7

8

✓
4

11

◆4/3

(Ne↵ � 3.046) , (3.23)

where the integral is performed over all frequencies f & 10�15 Hz (f & 10�10 Hz)
for the CMB (BBN). The current bound from CMB reads Ne↵ = 3.04 ± 0.17 [103],
BBN constrains Ne↵ = 3.28 ± 0.28 [104]. For all inflation models with monotonously
growing ✏(�), the high-frequency end of the spectrum yields the largest contribution.
The resulting bounds on the f � � parameter space of the Starobinsky-like models are
discussed in [94]. Taken at face value, they exclude all the parameter space accessible
to LISA. In the case of chaotic inflation Ne↵ is typically smaller, but also in this case
some parts of the parameter space are disfavoured by existing bounds. However, the
calculation of Ne↵ relies sensitively on the high-frequency tail of the spectrum, far
outside the LISA band. Here the strong back reaction of the gauge fields induces
sizeable theoretial uncertainties, and we note that reducing the GW amplitude by an
overall O(1) factor in this regime would avoid all current bounds while only marginally
a↵ecting the reach of LISA.

In summary, we stress that the observational channels listed above are powerful and
highly complementary to direct GW searches with LISA. When comparing with the reach of
LISA, there are however two main caveats: firstly, the constraints listed in this subsection
rely on an extrapolation of the GW or scalar spectrum over many orders of magnitude
of scales, which may be performed e.g. by assuming the validity of eq. (3.16) over these
scales. However, the microphysics of inflation may be more complicated than this simple
parametrization suggests, in which case this extrapolation may be misleading. Secondly, for
both the PBH constraint and the Ne↵ constraint, the main contribution arises from the high
frequency tail of the spectrum, in which perturbative control of the theoretical calculation
is poor at best [93]. This underlines the power of the local parametrization discussed in
section 3.2, which focuses on the analysis purely within the LISA frequency band. On the
other hand, these caveats may also be seen as features, since within this class of models,
the above di↵erent observations provide access to di↵erent parts of the scalar potential of
inflation, thus potentially providing a very powerful probe to learn about the microphysics
of inflation.

4 Gravitational waves from inflationary spectator fields

Several works [105–107] have studied inflationary scenarios where other scalar fields, besides
the inflaton, are present, even though they do not influence the inflationary background
dynamics. These fields are, correspondingly, referred to as spectator fields.6 The presence

6In literature, the name spectator field is used to identify slightly di↵erent roles played by an extra scalar
field. Here we refer to the one considered by [105–107].
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of a spectator field, in particular its scalar perturbations, gives rise to a second-order source
term in the equation of motion of GW, so that a classical production of tensor modes takes
place7 [109, 110]. Therefore, the power spectrum of the GWs created during inflation in these
scenarios is given by two contributions: the irreducible contribution generated by quantum
fluctuations of the gravitational field [see eqs. (1.2), (1.3)], and a second contribution due
to the classical production of tensor modes by the spectator field(s). From now on, we will
refer to the scalar and tensor power spectra generated by a spectator field, as the sourced
power spectra.

It has been noticed [105] that the amplitude of the sourced GWs is strictly linked to the
speed of sound of a given spectator field. More precisely, the lower the speed of sound the
more e�cient the production of GWs is. A number of works [105–107] have studied the GW
production by spectator fields [106, 107] for specific inflationary models. They found out that
the amplitude of the GWs on CMB scales, induced by the presence of a spectator field, cannot
be responsible for a large value of the tensor-to-scalar ratio r on such scales. The reason
is that, besides the classical GW production, an extra scalar perturbation production takes
place too, determined by the same parameters of the tensor counterpart. Scalar perturbations
are well constrained by current CMB measurements [57] and, consequently, the related GW
production is bounded too.

The previous restriction attains only the amplitude of scalar and tensor power spectra
on CMB scales. However, theoretical predictions allow the sourced contribution of GWs to
have a blue-tilded spectrum, making this signal possibly accessible to LISA, while keeping
an acceptable amplitude at the CMB scales. In this section, after reviewing the predictions
about scalar and tensor power spectra in the presence of a spectator field, we will discuss its
specific parameter space. Taking into account the bounds coming from current observations,
we will investigate how LISA may add new information on the parameter space.

4.1 Prediction of the gravitational wave signal

Among the models included in this framework, we consider the specific scenario investigated
by [107]. Compared to others [105, 106], this model opens up the possibility for a larger
production of sourced GWs, thus representing the most interesting case for our purposes. In
this respect, it should be noted that, as we are investigating a specific model among those
with spectator fields present, the results we are going to present are model-dependent.

Let us recapitulate first the results of [107] about scalar and tensor power spectra. Let
us consider the following Lagrangian,

L =
1

2
M2

PlR+
1

2
@µ�@

µ�� V (�) + P (X,�) , (4.1)

where � is the inflaton, � is the spectator field, X = 1
2@µ�@

µ� and P is a generic function
of X and �. We consider the inflaton to be responsible for the inflationary expansion and
for the primordial scalar perturbations. On the other hand, while the spectator field does
not influence the inflationary background dynamics, it creates nonetheless scalar and tensor
perturbations. The spectator field � is characterized by a non-standard Lagrangian, with
a propagation speed of its perturbations cs ⌘ PX/

�
PX + PXX �̇

2
0

�
(with �0 the background

value), is di↵erent from the speed of light. In particular, we are interested in models with
cs ⌧ 1, as this makes the GWs production more e�cient with respect to the case cs = 1.

7An analogous mechanism of GWs production takes place also in the curvaton scenario [108].
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We also take into account the possibility that cs varies during inflation. This variation
can be characterized by the dimensionless parameter

s ⌘ ċs
Hcs

6= 0 , (4.2)

where the dot represents a derivative with respect to time. In the following analysis we will
consider s to be a small quantity, that is |s| < 1. The total power spectrum of the GWs
generated during inflation is composed by two contributions: the irreducible part due to
vacuum fluctuations given by eq. (1.3), and the contribution generated classically by the
source term in the GW equation of motion, provided by a spectator field. Each of these
contributions, turns out to be well described by a power law, i.e. by an amplitude, referred
to a pivot scale, and a spectral index (here considered as scale independent). An analogous
situation takes place for the scalar perturbations, which are also sourced by vacuum and
spectator field induced contributions, following as well a power law behavior. We expect
therefore the total tensor and scalar power spectra to be described, respectively, by

PGW (k) = A
(v)
T (k⇤)

✓
k

k⇤

◆n
(v)
T

+A
(�)
T (k⇤)

✓
k

k⇤

◆n
(�)
T

, (4.3)

and

PS (k) = A
(v)
S (k⇤)

✓
k

k⇤

◆n
(v)
S �1

+A
(�)
S (k⇤)

✓
k

k⇤

◆n
(�)
S �1

, (4.4)

where k⇤ is a pivot scale. In both expressions the first term refers to the contribution
provided by vacuum fluctuations, while the second terms are those induced by the presence
of the spectator field.

The expressions for the sourced scalar and tensor power spectra are obtained from the
perturbed action at third-order [107]. In the latter, a term of the form ⇠ hij���� appears.
Such a term is responsible for the generation of the sourced contribution in the GWs power
spectrum. The equation of motion of tensor modes (1.5) turns out to be [107]:

h00ij + 2Hh0ij � @2khij =
2PX

M2
Pl

{@i��@j��}TT , (4.5)

where H is the Hubble parameter in conformal time, PX is the derivative of P with respect
to X, and {. . .}TT selects the transverse and traceless part of the tensor inside the brackets.
Following the calculation developed by [107], the amplitude at a given pivot scale results well
approximated by

A
(�)
T ' 8

15⇡c3s

H4

M4
Pl

, (4.6)

where H and cs are evaluated at the pivot scale. In light of this expression it becomes clear
that if cs < 1, this enhances the sourced GW contribution with respect to the case cs = 1.

We report also the expression for the sourced scalar perturbations, as these play a signif-
icant role in constraining the GWs production. In fact, both scalar and tensor perturbations
are determined by the same parameters, and hence significant constraints on the tensor
power spectrum are obtained thanks to current bounds on primordial scalar perturbations.
The computation of the sourced scalar perturbations is however complicated. Several terms
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of the form8 ⇠ ������ appear in the action at the third order [107]. The authors of [107]
claim that it is not clear, a priori, which term plays the main role in sourcing scalar perturba-
tions. Based on theoretical considerations, they select one of these terms, �N (@i��)

2 where
�N ⇠ ��, and develop the calculations considering only such a contribution. In general, how-
ever, it is not to be excluded that other terms in the source could partially cancel each other.
In the absence of a more elaborated analysis, we have decided to consider the same term
taken into account in [107], developing our analysis by considering only that contribution.
Later on, we will make further considerations about this point.

The amplitude of the sourced scalar contribution at the pivot scale, related to the term
just mentioned, is found to be [107]

A
(�)
S ' 1

32⇡c7s

H4

M4
Pl

, (4.7)

where H and cs are evaluated at the pivot scale. The amplitude of the sourced scalar power
spectrum is therefore also enhanced by cs < 1 values.

From eqs. (4.6)–(4.7), the respective spectral indexes can be obtained considering the
scale dependence of H and cs. At lowest-order in the parameters ✏ and s, they turn out to be:

n
(�)
T = �4✏� 3s , (4.8)

n
(�)
S � 1 = �4✏� 7s , (4.9)

where ✏ ⌘ �Ḣ/H2 and s is defined in eq. (4.2). For our purposes, we are interested in the
scenarios in which s 6= 0, and in particular in the cases in which s < 0, so that an enhancement
of the GW amplitude on small scales can be obtained. Eqs. (4.6)–(4.7) are the contributions
to scalar and tensor perturbations induced by the presence of the spectator field. The whole
scalar and tensor power spectra are obtained adding the contributions generated by vacuum
oscillations of the inflaton and the gravitational field respectively. At the end, the total power
spectra of eqs. (4.3)–(4.4) read

PGW (k) ' 2H2

M2
Pl

✓
k

k⇤

◆n
(v)
T

+
8

15⇡c3s

H4

M4
Pl

✓
k

k⇤

◆n
(�)
T

, (4.10)

PS (k) ' H2

4✏M2
Pl

✓
k

k⇤

◆n
(v)
S �1

+
1

32⇡c7s

H4

M4
Pl

✓
k

k⇤

◆n
(�)
S �1

, (4.11)

where H and cs are evaluated at the pivot scale k = k⇤. The total GWs power spectrum
is then given by the sum of two contributions described by two di↵erent power-laws. The
interesting fact for our purposes is that, if cs is su�ciently small and s is negative with a
su�ciently large absolute value, i.e. s ⌧ �1, the sourced GWs could reach a su�ciently large
amplitude, in principle detectable by LISA, while at the same time a small amplitude is kept
at the CMB scales. Moreover, notice that, similarly to what happens for GWs sourced by
gauge fields, like in section 3, tensor perturbations are expected to be non-Gaussian in this
case too.

From eqs. (4.8)–(4.11), the scalar and tensor power spectra turn out to be described by
the energy scale of inflation, via the Hubble parameter H, by the slow-roll parameter ✏ and
by the more specific quantities cs and s. We consider the parameter space cs-s evaluated at

8Where time and spatial derivative of each factor can be present.
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the pivot scale k⇤ = 0.05Mpc�1, for fixed values of the Hubble parameter H. We find the
bounds provided by CMB measurements and other observations, and we investigate which
information LISA can add in such a space. Notice that the results we are going to show, lie
on the assumption the expressions (4.10) and (4.11) to be valid on a wide range if frequencies,
from CMB scales up to the frequencies to which laser interferometer detectors are sensitive.

4.2 Constraints from CMB observations

Measurements of the CMB provide several estimations and bounds on scalar and tensor
perturbations at f ⇠ 10�17 Hz:

• The scalar perturbation amplitude at the pivot scale k⇤ = 0.05Mpc�1, A0.05 = 2.21 ·
10�9 at 68% C.L. [111]. Notice that this bound constraints scalar perturbations without
distinguishing possible di↵erent contributions.

• An upper bound on the slow-roll parameter, ✏ < 0.0068 at 95% C.L. [57] considering
Planck TT+lowP, that is temperature and low ` polarization data.

• An upper bound on r at the pivot scale k⇤ = 0.05 Mpc�1, r0.05 < 0.09 at 95% C.L. [78],
which corresponds to an upper bound of H ' 8.5 · 1013GeV at the same scale.

The limit on the slow-roll parameter ✏ sets a lower bound, for a fixed value of H, on
the amplitude of the scalar perturbations due to vacuum fluctuations of the inflaton field.
From the measurement of the scalar amplitude A0.05, an upper bound on the contribution to
scalar perturbations due to the spectator field is found. From the expression of the sourced
scalar perturbations eq. (4.7), a lower limit on cs is obtained, indicated by the vertical line
in figure 9.

For cs values smaller than this limit, ✏ grows beyond the upper bound ✏ = 0.0068, up
to a cs value below which the total scalar amplitude required by CMB observations cannot
be obtained for a positive value of ✏. The requirement of ✏ to be positive, sets a lower bound
of cs, actually so tiny smaller with respect to the one discussed just above that in the next
plots would not be distinguished with respect to the first (due to the power of cs in eq. (4.7).
Since in the next analysis the value of A0.05 given by CMB observation will be assumed in
order to obtain limits of the parameter space from other experiments, we will assume directly
the limit on cs derived from eq. (4.7) and maintaining ✏ < 0.0068. The white region on the
left of each plot of figure 9 corresponds to the values of cs obtained for ✏ > 0.0068. The
choice ✏ < 0.0068 ensures automatically that we are not considering regions of parameter
space where the slow-roll condition on ✏ are significantly violated.

A large and negative value of s means a positive spectral index for the sourced GWs.
However, at the same time it corresponds to a positive spectral index for sourced scalar
perturbations too, see eq. (4.8). Therefore, one should check the sourced scalar perturbations
to be compatible with CMB data for all the range of scales on which CMB experiments are
sensitive. In particular one should keep under control the amplitude of scalar perturbations
on the smaller scales to which CMB measurements are sensitive, that is k ' 0.1Mpc�1 [112].

We have made an estimation of this requirement considering the parametrization of
the scalar power spectrum made by [57], where a spectral index, a running of the spectral
index and a running of the running are admitted. We calculate the scalar amplitude at
k = 0.1Mpc�1 with the parameter estimations provided by such analysis and we required the
total amplitude of scalar power spectrum to not exceed it at the same scale. In correspondence

– 26 –



J
C
A
P
1
2
(
2
0
1
6
)
0
2
6

10010-110-210-3

100

10-1

10-2

10-3

cs

-
s

10010-110-210-3

0.2

0.3

0.4

0.5

0.6

cs

-
s

Figure 9. Parameter space of cs-s at k⇤ = 0.05Mpc�1. In both plots, the lower bound on cs obtained
from the upper bound on ✏ and from the estimation of the scalar amplitude on CMB scales is reported.
The red region is that admitted by such constraints. The red-dashed curve is the bound obtained
from CMB data at small scales, as explained in the text. Plot on the right: blue curves represent the
discriminant power of LISA, the dashed curve corresponds to A1M2, the solid one to A5M5. The blue
region is that left allowed by an eventual non-detection of the GW signal associated to this scenario
by the respective LISA configuration. All the curves are obtained for H = 1012 GeV.

of positive spectral index of the sourced scalar contribution, these considerations turned out
to add a more stringent lower bound on cs, that is on the contribution of the sourced scalar
perturbation to the total scalar power spectrum. Besides, an upper limit on the spectral
index of the sourced scalar power spectrum (and hence on |s|), can also be found for a given
value of the sourced scalar amplitude (for a fixed value of H). See figure 9. The obtained
constraints are in agreement with the general results provided by [113], which points out that
CMB measurements admit a secondary contribution to the scalar power spectrum with an
amplitude smaller than 10% with respect to the main contribution (which corresponds to the
region allowed by our estimations) without strict constraints on the related spectral index.

We find the obtained bound to be sensitive to the values of the amplitude imposed
at k = 0.1Mpc�1 (and to the choice of this scale itself). We will see soon that physical
observables which provide constraints on GWs at small scales split the parameter space in a
di↵erent direction with respect to bounds obtained from CMB. Moreover, this bound ensures
the sourced contribution to scalar perturbations to be suppressed with respect to the other
one on CMB scales, and then that our choice of the estimation of the parameter ✏ referred
to a single-field model, is reasonable.

Current CMB data provide significant constraints on non-Gaussianities of scalar per-
turbations on large scales. In particular, Planck data analysis gives an upper bound on the
non-linearity parameter fNL [83], which quantifies the non-Gaussianities level. The presence
of a spectator field induces the generation of extra contributions in the bispectrum of scalar
perturbations, with respect to the scenario of single-field inflation (see the overview of models
in [83]). Here fNL is expected to be proportional to a negative power of cs, fNL / c�p

s , p > 0.
Therefore, current constraints on non-Gaussianities are expected to set a lower bound on cs,
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which eventually could shift the previous lower limit on cs to larger values. The only esti-
mation [105] available about non-Gaussianities in this type of scenarios indicate that scalar
non-Gaussianities induced by the spectator field should be suppressed. In light of this con-
sideration, LISA might turn out to be more powerful in constraining the parameter space
than bounds on scalar non-Gaussianities. On the other hand, in light of the dependence of
our estimations on the specific model considered, it should not be excluded that a complete
computation of scalar non-Gaussianities might reduce the allowed parameter space. In this
respect a complete calculation of the non-Gaussianities of scalar perturbations related to
this scenario, remains as an interesting improvement of the present analysis, to be done in
the future.

A further feature that could put some constraints is a scale dependence of fNL. In fact,
in the region of the parameter space interesting for LISA, the sourced scalar power spectrum
can be enhanced, see eq. (4.9). Therefore the contribution to the non-Gaussianity due to the
presence of the spectator field could turn out to be significantly scale dependent. Current
analysis of CMB data does not provide constraints on the scale dependence of fNL suitable
for the scenario considered here. If significant constraints on the non-Gaussianity scale de-
pendence become available in the future, these could set a new bound in the parameter space.

4.3 Constraints from LISA

From the primordial GW power spectrum, the present-time GW spectral energy density is
calculated as follows (see for example [114]):

h2⌦GW (k, ⌧0) =
k2

12a20H
2
0

PGW (k)T 2 (k, ⌧0) , (4.12)

where the transfer function T (k, ⌧0) is given by:

T (k, ⌧0) =
3⌦mj1 (k⌧0)

k⌧0

s

1.0 + 1.36

✓
k

keq

◆
+ 2.50

✓
k

keq

◆2

. (4.13)

The subscrit 0 indicates the present time, keq is the scale of the horizon at the time of
radiation-matter equality, ⌦m the matter density and j1 is the Bessel function.

As the spectral index related to vacuum fluctuations is negative, in the range of LISA
sensitivity the only contribution to GWs that can be relevant is the sourced one. Therefore
here and in the analysis related to experiments at small scales, we will only consider such a
contribution. The primordial power spectrum PGW on LISA scales can then be characterized
by the amplitude (4.6) and the spectral index (4.8).

At k⇤ = 0.05Mpc�1, the slow-roll parameter ✏ appearing in the spectral index can be
written in terms of the parameter cs by requiring the whole scalar amplitude to be given by
the value provided by the Planck analysis, for a fixed value of H, see eq. (4.11). So, at the
end ⌦GW (k) turns out to be parametrized by cs and s, for a fixed value of H. Therefore, for
each value of cs, one can identify the smaller value of s for which ⌦GW reaches a given LISA
sensitivity curve. These pairs of values build up the curves represented in the right panel
of figure 9. Notice that here we used the so-called power-law sensitivity curves, obtained by
the method provided in [76]. The region below each curve corresponds to those GW signals
that, in principle, cannot be detected by the respective experiment at 95% C.L. and then
constitute the parameter space left open by an eventual non-detection of the GW signal
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associated to the current scenario. Varying the value of the Hubble parameter moves the
previous constraints as shown in the left panel of figure 10.

As said before, we are considering the sourced scalar power spectrum generated by one
of the terms that appear in the third order action. The real situation is more complicated.
There could be further terms which are e�cient sources for scalar perturbations. In the latter
case the bounds coming from CMB would reduce the parameter space further than shown
in our present plots. In any case, CMB constraints are expected to push cs towards greater
values, still leaving to LISA a significant role in reducing the parameter space with respect
to experiments operating at large scales.

4.4 Other constraints

Besides CMB measurements, other bounds on primordial scalar and tensor power spectra
are provided by current observations. As mentioned in section 3.4, Big Bang Nucleosynthesis
(BBN) physics provides a stringent constraint on the integrated GW energy density, from
which a significant upper limits on ⌦GW is obtained [115], see eq. (3.23). Moreover, the first
aLIGO observation run set also an upper bound on ⌦GW (f) at around f ⇠ 102 Hz [97].

The Big Bang Nucleosynthesis (BBN) process provides an upper bound of the integrated
GW spectral energy density for f & 10�10 Hz. The combination of such a limit with CMB
observations, BAO and primordial Deuterium abundance measurements leads to an upper
limit on the integrated GW spectral-energy density of ⌦GW . 3.8 · 10�6 at 95% C.L. [115],
see section 3.4 for more details. Assuming a power-law shape for the GW power spectrum,
the logarithmic integral of ⌦GW (f) can be expressed in terms of the GW power spectrum
amplitude at CMB scales and the spectral index. Then, employing an analogous procedure
to that introduced in [76], an upper bound for ⌦GW(f) can be found for a given range of
possible values of the spectral index. Given that constraint and following the same procedure
used to find the bounds related to LISA, we obtained the curves in the right panel of figure 10.

We have checked that the obtained bound does not depend significantly on the assumed
range of spectral indexes, for which we took nt 2 (�1, 3). On the other hand, it turns
out that the bound on ⌦GW(f) significantly depends on the reheating temperature of the
Universe, which is an unknown quantity. In fact, the frequency at which ⌦GW (f) decays, and
hence the upper limit of the integration, strictly depends on the reheating temperature, see
e.g. [114]. In the right panel of figure 10 we report the curve obtained assuming instantaneous
reheating, with a temperature corresponding to the inflationary energy scale. For lower
reheating temperatures the curve turns out to be less restrictive.

The aLIGO O1:2015-16 observation run [97] provided an upper limit on ⌦GW (f) with
respect to a power-law GW signal. Following the same procedure used for the LISA bound,
the black curve in the right panel of figure 10 is obtained. For the GW signal considered here,
this bound turns out to be the most stringent one we have up to now. As introduced in 3.4,
we know that considerations on the physics of PBH provide an upper bound on the amplitude
of scalar perturbation on a broad range of scales, from very small frequencies (large scales)
up to f ⇠ 106 Hz [116]. In most of the parameter space accessible by LISA, the spectral
index of the sourced scalar contribution is expected to be positive, see eq. (4.9). The upper
bound on scalar perturbations provided by PBH, is expected to put an upper bound on such
a quantity and hence on a combination of the parameters s and ✏. As before, the latter
can be written in terms of cs exploiting the value of A0.05 provided by CMB measurements.
Then, for a fixed value of H, PBH provide an upper bound on s for a given cs. The bound
plotted in figure 11 is obtained imposing that the sourced scalar perturbations get a maximal
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Figure 10. Parameter space of cs-s at k⇤ = 0.05Mpc�1. On the left: bounds obtained from CMB
measurements (vertical lines) and LISA A5M5 discriminant power, for di↵erent values of the energy
scale of inflation, e.g. of H. Each color corresponds to a fixed value of the Hubble parameter: H =
1011 GeV (green), H = 1012 GeV (orange), H = 1013 GeV (blue). On the right: current bounds
obtained from the limit provided by [115] for Treh = 1012 GeV (yellow) and aLIGO O1:2015-16
observation run (black). The energy scale of inflation is fixed at H = 1012 GeV.

amplitude of 10�2 at f⇤ = 106 Hz [116]. However, the physics of PBH is quite uncertain and
the way in which they are modeled contains several assumptions that need to be verified. In
this sense, an experiment like LISA can o↵er precisely the ability to test our understanding
of the modeling of PBH formation. If the current modeling of PBH physics is eventually
confirmed, LISA is unfortunately not expected to be able to detect GW produced during
inflation by spectator fields, as we are discussing here. The situation does not change even
if we weaken the PBH constraint by one or two order of magnitude, or if we lower f⇤ by an
order of magnitude.

Ignoring PBH constraints, we find that each proposed configuration of the LISA ex-
periment can significantly reduce the parameter space of the model with respect to CMB
constraints. In fact, LISA, in particular its best configuration, is expected to sightly improve
current bounds obtained from other experiments at small scales. The overall situation does
not change for di↵erent values of the energy scale of inflation.

However, as we previously mentioned before a complete calculation of the sourced scalar
contribution and of the related non-Gaussainities might improve the present analysis. Con-
sidering current estimations available in the references of non-Gaussianities, LISA might
turn out to put stronger constraints in the parameter space than considerations on scalar
non-Gaussianities from the CMB. On the other hand, it should not be excluded that a com-
plete computation of scalar non-Gaussianities could shrink the allowed parameter space so
largely, that the ability of LISA to constrain the parameter space of these scenarios could be
significantly reduced with respect to the present constraints at small scales.

Anyhow, constraints obtained by data on CMB scales can be exploited for testing the
origin of an eventual inflationary GW signal observed by an experiment such as LISA. In
fact, a detection by LISA of GWs identified by a point in the parameter space not allowed
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Figure 11. Parameter space of cs-s at k⇤ = 0.05Mpc�1. Bounds obtained from considerations on
PBH physics. The green region is that allowed by current considerations on such a physics. The
energy scale of inflation is fixed at H = 1012 GeV.

by CMB constraints, would indicate that the detected signal is not to be associated to the
inflationary scenario considered here. In this direction, a complete calculation of the scalar
power spectrum, of the related non-Gaussianities and of their dependence on the scale, could
be of further improvement.

On the other hand, taking at face value the present bounds provided by PBH physics
to be valid, LISA does not have the capability of detecting primordial GWs produced in
this inflationary scenario. At the same time, however, LISA still has the ability to provide a
validation test for the several assumptions currently made in the modeling of PBH physics.
Moreover, notice that the previous constraints have been obtained assuming a constant value
of s on a wide range of frequencies. In particular, we are assuming the spectral index related
to the sourced scalar power spectrum to be constant up to a range of frequencies higher
than those related to LISA. Admitting a running of the spectral index of the sourced scalar
perturbations, and then a running of the sourced GW spectral index, the scalar amplitude
at small scales can be lower than in the case with s constant, having at the same time a large
amplitude at LISA frequencies. Therefore, admitting a running of the spectral index of the
sourced scalar perturbations and a running of the sourced GW spectral index, leaves open
the possibility of satisfying the PBH constraints, having at the same time a GW signal that
exceeds the LISA sensitivity.

5 GWs in the framework of EFT of broken spatial reparametrizations

In the previous sections we examined scenarios where an enhanced primordial tensor spectrum
is induced by fields which are usually not responsible for driving the inflationary expansion.
Such additional fields might or might not interact with the inflaton field. Their dynamics
should not lead to an important back reaction on the expansion of the Universe in order to
avoid spoiling inflation or generating significant changes on the scalar spectrum, while their
interactions should not produce large non-Gaussianities incompatible with current CMB
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data [83]. However, one may ask whether inflationary models exist, leading to features in
the GW spectrum similar to those described in the previous sections, while not invoking any
additional fields, besides the ones driving inflation. In this section, we examine whether such
scenarios, which have the advantage of avoiding back reaction issues, are plausible.

In order to be detectable with LISA, the spectra must be enhanced at scales smaller than
the CMB ones, thus we require a blue tensor spectrum for inflationary gravitational waves.
Hence, such scenarios should violate the inflationary consistency relations which normally
lead to a red spectrum. Scenarios with a blue spectrum of inflationary tensor modes can
have a tensor power spectrum whose amplitude is too small to be detected at CMB scales
through the B-modes, however such amplitude increases at smaller scales, therefore maybe
becoming detectable by an interferometer like LISA.

We will use an approach based on symmetry principles, motivated by the E↵ective Field
Theory (EFT) of inflation [117]. Conventional models of inflation involve scalar field(s) with
a time-dependent homogeneous profile, which breaks only the time-reparametrization sym-
metry of de Sitter space during inflation; space-reparametrizations are normally preserved.
Tensor modes are transverse traceless fluctuations of slices of constant time. Regardless of
the specific model one considers, requiring space-reparametrization on such slices imposes
constraints on the structure of the tensor action. In such a set-up, tensors are adiabatic,
massless modes during inflation, conserved at superhorizon scales. The tensor power spec-
trum is controlled by the value of the Hubble parameter and the tensor sound speed; the latter
can be di↵erent from the one in models with kinetic mixing between gravity and the inflaton,
as e.g. G-inflation [118, 119]. The resulting amplitude of tensor power spectrum decreases
at smaller scales — corresponding to a red spectrum — unless the tensor sound speed is
strongly time-dependent (although this would be problematic for the scalar spectrum [120]).
Hence, inflationary scenarios breaking only time-reparametrization do not normally lead to
an enhanced tensor spectra at small scales, unless additional ingredients as extra fields are
included, as discussed in the previous sections.

When we break space-reparametrization during inflation, by considering inflaton fields
with space-dependent profiles, the previously drawn conclusions may change in an interesting
way. Namely, models which break space-reparametrization can lead to inflationary tensor
modes that are massive, since there is no symmetry preventing tensor fluctuations from
acquiring a mass during inflation. The graviton mass, if su�ciently large, can lead to a blue
spectrum for gravitational waves, which enhance their power at scales much smaller than
the CMB ones. At the end of inflation, the inflaton field can arrange itself so as to recover
space-reparametrization symmetry, hence making the graviton mass equal to zero.

There are various examples in the literature which realise such a possibility, and an e↵ec-
tive field theory approach allows one to understand their features in a general way. Models
of vector inflation, first introduced in ref. [121], break space-reparametrization symmetry
by providing space-like vacuum expectation values (vevs) to a set of vector fields. In their
original versions, they are plagued by a ghost mode [122], but there exist scenarios, such as
gauge or chromo-natural inflation [123, 124], which are free from such instabilities, while they
lead to various distinctive signatures for the tensor spectrum (see e.g. [125] and references
therein). Other models, as Solid [126] and Supersolid [127–130] inflation, involve scalar fields
only. They are described by Lagrangians which contain three or four scalar fields, obeying
internal symmetries which ensure the homogeneity and isotropy of the spacetime background
configuration. The scalars have time- and space-dependent vevs which break reparametriza-
tion symmetries of the background: from an EFT viewpoint, they are the minimal scenarios
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with the symmetry breaking pattern one wishes to study. The fact that they can lead to
a blue spectrum for tensor modes, as well as to other distinctive properties in the tensor
spectrum, has been pointed out in ref. [126], recently studied in [131], and further studied in
refs. [128, 130, 132, 133].

Any set-up which breaks space-reparametrization leads to several distinctive signatures
also in the scalar sector, or in higher order interactions between scalar and tensor modes. In
the next subsections 5.1 and 5.2 we discuss properties of the tensor sector of possible interest
for LISA, and then study further testable predictions in subsection 5.3.

5.1 Properties of gravitational wave signals

We consider model independent features of tensor fluctuations in scenarios that break space-
reparametrization during inflation. We limit our attention to set-ups which preserve isotropy
and homogeneity of space time at the background level, considering only tensor fluctuations
hij around a FLRW background, as described in the Introduction.

Under our assumptions about the symmetry breaking pattern, we can write the most
general form for the second order action for tensor fluctuations [128]:

S(2) =
M2

Pl

8

Z
dt d3x a3(t)n(t)


ḣ2ij �

c2T (t)

a2
(@lhij)

2 �m2
h(t)h

2
ij

�
, (5.1)

where n, cT and mh are functions of t, determined by the model under consideration. and
a(t) is the scale factor of the Universe. We emphasize that in writing the previous quadratic
action, we did not intend to commit on specific scenarios, but instead included all terms
allowed by the symmetries. The graviton squared mass m2

h is the distinctive feature of
a set-up that breaks space-reparametrization. A tensor sound speed cT 6= 1 is normally
associated with scenarios with kinetic mixing among tensors and scalars, as in G-inflation,
or more generally in inflationary models in Horndeski scalar-tensor theories [134]. Notice
that a disformal transformation can be applied on the metric, so to set cT = 1 [135]. Such
transformation would also change the graviton mass, modifying the scale dependence of the
tensor spectrum and a↵ecting also the scalar sector. For this reason, we prefer not to consider
it here. Also the overall factor n(t), which can be thought as renormalizing the Planck mass,
has to be expected in scenarios with kinetic mixing among gravity and scalar fields.

Let us comment on the mass term: m2
h can be both positive and negative. The Higuchi

bound suggests m2
h < 0, since it states that tensor modes can not have a mass in the

interval 0 < m2
h  2H in pure de Sitter space, when considering theories that are Lorentz

invariant [136, 137]. However, inflation does not occur in a pure de Sitter space, so a small and
positivem2

h might be allowed in theories which preserve Lorentz symmetry at the fundamental
level, but spontaneously break de Sitter symmetry. Moreover, considering theories which
break Lorentz symmetry, e.g. Horava-Lifshitz scenarios [138], the Higuchi bound does not
necessarily apply. We refer the reader to ref. [139] for a formulation of Lorentz violating
massive gravity in cosmological backgrounds. In our case, we keep agnostic and allow also
for a positive m2

h.
In order to find the power spectrum of gravitational waves, we need to have information

about the time-dependence of the functions entering eq. (5.1). The computation of the tensor
spectrum normally requires a careful numerical analysis. Analytical considerations can be
carried out in a quasi de Sitter space, ✏ ⌧ 1 for cT and mh only mildly depending on time.
Focusing on the approximation of pure de Sitter, H = const., for cT and mh constants and
setting n = 1, we can follow the standard procedure of quantizing the tensor modes around
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de Sitter background.9 Tensor modes in Fourier space are indicated with h̃ij(t, ~k). Starting
from the equal-time two point function for tensor modes, which we expressed as

hh̃ij(~k) h̃kl(~k0)i = (2⇡)3 �(3)(~k + ~k0)Pij, kl , (5.2)

we define the primordial tensor power spectrum evaluated at comoving scale k, as

Ph =
k3

2⇡2
Pij, ij . (5.3)

In our set-up, this leads to

Ph =
H2

4⇡M2
Pl

✓
k3

k3⇤

◆ ���H(1)
⌫

✓
cT k

k⇤

◆ ���
2
, (5.4)

with H
(1)
⌫ (x) the Hankel function of first kind, k⇤ a reference scale, and

⌫ =
3

2

s

1� 4m2
h

9H2
. (5.5)

A simplification occurs in the limit of small graviton mass, |mh/H| ⌧ 1, for which the power
spectrum becomes a power law for su�ciently large scales:

Ph =
H2

2⇡2M2
Pl c

3
T

✓
k

k⇤

◆nT

, (5.6)

with (recall we are considering an approximation of pure de Sitter space)

nT =
2

3

m2
h

H2
. (5.7)

Notice that a blue spectrum, nT > 0, requires a positive m2
h. This is the case we are most

interested to, since it enhances the tensor spectrum at small scales, and can lead to a signal
detectable with LISA. We present our study in the next subsection. For simplicity, we use the
representative formulae of eq. (5.6) for the power spectrum and eq. (5.7) for the spectral tilt.

5.2 Parameter analysis based on the LISA sensitivity curves

Our framework is convenient for carrying out a model-independent analysis of the conse-
quences of breaking space-reparametrization symmetry during inflation, and connecting it
with a possible detection of the GW signal in the range of frequencies and energy densities
probed by LISA. The power spectrum of primordial tensor modes in (5.6) depends on the
energy scale of inflation H, on the tensor speed of sound cT that can varies in the interval
0  cT  1 (in unity of speed of light) and finally on the mass of the graviton mh.

In this section, we investigate the ability of the di↵erent LISA configurations, men-
tioned in section 2, in constraining the space of such parameters. In particular the Hubble
parameter H and the tensor sound speed cT control the amplitude of the power spectrum,
while the dimensionless combination mh/H characterizes the tensor spectral index nT . We

9As far as we are aware, more general analysis of dynamics and quantization of tensor modes with arbitrary
time dependence of tensor mass and sound speed during inflation have not been carried on so far in the
literature.
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Figure 12. Spectrum of GWs energy density h2⌦gw for di↵erent values of the e↵ective mass of
the graviton mh, Hubble rate during inflation H, and tensor sound speed cT , compared with the
sensitivity of LISA (grey curves) and LIGO (black curves) detectors. We use k⇤ = 0.05 Mpc�1 as a
pivot scale.

emphasize that, for simplicity, we use the representative eqs. (5.6) and (5.7) for investigating
the combined e↵ects of graviton mass and tensor sound speed during inflation. We fix the
pivot scale at k⇤ = 0.05 Mpc�1 and we use MPl = 2.4⇥ 1018 GeV for the (reduced) Planck
mass. For simplicity in our analysis we assume that both the tensor sound speed and the
graviton mass are time independent; their time dependence could be subject of a further
analysis, for example along the lines of the recent works [140, 141]. In figure 12 we plot the
GWs energy density for some representative values of the mass of the graviton and speed
of sound, for two di↵erent energy scales of inflation. The fractional GW energy density is
related to the power spectrum (5.6) by the transfer function, defined in (4.13). One can easily
notice that the e↵ect of the mass is an enhancement of the power on small scales. Then this
opens the possibility to extract limits on the (minimum) mass of the graviton during infla-
tion in order to have a signal detectable by LISA. We show the ability of the “best” (A5M5)
and the “worst” (A1M2) LISA configurations in putting a lower bound on the mass of the
graviton mh, fixing the Hubble parameter and the tensor speed of sound. From figure 12 we
see that a 6 links, 1 million km arm-length, 2 years of observation with LISA (A1M2) will
be able to probe the e↵ects of a graviton with mh ' 0.78H, for an energy scale of inflation
of H = 1013GeV and cT = 1, while the “best” LISA configuration (A5M5), still with 6 links,
but with 5 million km arm-length, 5 years of observation will put a smaller lower bound on
the mass, mh ' 0.68H for the same inflationary energy scale and speed of sound. Lowering
the energy scale of inflation to H = 1012GeV allows to probe higher valuer of the e↵ective
mass. In the same figure we also show the e↵ect of fixing the value of the graviton mass to
some representative values and plot the ability of LISA configurations to put bounds on the
tensor speed of sound cT . In particular we find that the best LISA configuration (A5M5) for
a mass of the graviton mh ' 7.8⇥1012GeV will be able to test speed of sound at the level of
20% of the speed of light, while lowering the energy scale of inflation allows to reach 1% level.
For completness we also draw the predicted energy density for a complete scale-invariant case
(mh = 0). For comparison we also plot the aLIGO sensitivities: in particular we see that
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Figure 13. Region in the (cT � (mh/H)) parameter space of the theory that LISA can probe, for
the “best” (A5M5) configuration (left panel) and the “worst” (A1M2) configuration (right panel) at
di↵erent Hubble rate during inflation.

neither aLIGO O1 nor the future aLIGO/adVirgo O5 will be able to probe such a signal
characteristic of this kind of scenario.

The interplay among the three independent parameters {H, cT ,mh} allows us to put
constraints on the space of two of them fixing the third one. In particular in figure 13 we
show the perspective of LISA in constraining the parameter space (cT � mh/H) for the
best configuration: A5M5 (left panel) and the worst configuration: A1M2 (right panel) at
di↵erent energy scales. In both panels we have fixed the pivot scale k⇤ = 0.05Mpc�1 and
have used the following strategy: for a fixed value of the tensor speed of sound cT in the
interval 0  cT  1 we have computed the minimum of the graviton mass mh/H in order
to have a signal above the minimum of the two LISA sensitivity curves. We can see, on
the left panel, how the LISA best configuration is able to probe a larger range of masses for
the graviton, which increases for a higher value of the energy scale of inflation. This first
result highlights the importance of longer duration of the mission and longer arm-lengths.
Our analysis shows the ability of the LISA mission in excluding a large region of the space
of parameters that we are considering. With the same aformentioned strategy, we fix the
energy scale of inflation to two representative values: 1013GeV on the left and 1011GeV on
the right panels of figure 14 and we draw the contour plot in the (cT � mh/H) parameter
space, for the best and worst LISA configurations, adding the current upper bound on the
primordial GWs energy density coming from the recent LIGO detection of GWs coming from
the merging of BHs [1, 2]. In this way we shrink the parameter space of the theory since
a non-detection by LIGO of this signal puts an upper bound on the graviton mass and the
sound speed of tensor perturbations during inflation.

The ability of LISA to put constraints on the GW spectral index nT , explained in section
2, translates in this scenario in the possibility to scan the (mh/H �H) parameter space for
a given tensor speed of sound. Assuming the standard case of a graviton travelling at the
speed of light, from the left panel of figure 15, we can read the lower masses of the graviton
to which the LISA best (red curve) and worst (green curve) and aLIGO (gray curve) and
aLIGO/adVirgo (black dashed curve) are sensitive.

From a di↵erent perspective we can use the same information from the r�nT plot 3 to
show the probed region in the (cT �H) parameter space for a value of the tensor spectral tilt
nT . Choosing for istance nT = 0.3, value in the range of LISA possibilities, in figure 15 we see
that the best LISA configuration (A5M5) can be sensitive to energy scales of inflation around
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Figure 14. Region of the (cT�(mh/H)) parameter space constrained by the LISA “best” (A5M5) and
“worst” configuration (A1M2) and the (a)LIGO detector, for two di↵erent Hubble rate: H = 1013GeV
on the left and H = 1011GeV on the right. In the figure are shown also the upper limits from a non-
detection of such GW signal by the LIGO detector and eventually by the future aLIGO/adVirgo one.

Figure 15. Left: lower limits on the mass of the graviton in the (mh
H �H) parameter space for the

“best” (A5M5), the “worst” (A1M2) LISA configurations and the (a)LIGO detectors, for a tensor
speed of sound cT = 1. Right: lower limit on the Hubble rate during inflation for a GW signal
detectable by LISA with a tilt nT = 0.3, compatible with the maximum ability of LISA in constraining
such a parameter, as explained in section 2. The yellow curve represents the current Planck upper
bound on the Hubble rate during inflation, extrapolated at values cT < 1.

1012GeV. Of course a higher value of the spectral tilt, or a tensor sound speed lower than
the speed of light, would allow to reach lower inflationary energy scales. We have plotted
also the current Planck upper bound on the Hubble rate during inflation, extrapolated at
values cT  1 (yellow curve).

In future investigations, it will be interesting to extend the analysis of consequences of
inflationary gravitational mass and tensor sound speeds to richer scenarios, besides the ones
that can be parametrized by our equations (5.6) and (5.7).

5.3 Further constraints on GWs from other observables

Scenarios which break space-reparametrization symmetry during inflation can have several
other distinctive observational consequences, besides the small scale enhancement of tensor
modes. Such features are complementary to the ones discussed above, and make these sce-
narios distinguishable from other set ups with small scale enhancements of tensor modes, as
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the ones discussed in the previous sections. The details of these observational consequences
are model-dependent, but we can list common features related to the fact that tensors have
a mass during inflation (while become massless after inflation ends).

• Inflationary tensor modes are not adiabatic; in general, this implies that inflation is
not an e�cient isotropic attractor, and large scale anisotropies can be produced [142–
144]. This is not necessarily a bad feature, since it can lead to distinctive consequences
associated with modulations of the scalar two point function [143, 144], a property that
can be (and is) constrained by CMB experiments as Planck [145, 146].

• Primordial non-Gaussianities can be enhanced (but not at a level to be excluded by cur-
rent constraints) and have distinctive features as an angular dependent squeezed limit
of bispectrum for the scalar three-point function [126, 130, 147]. Such properties can
be tested through CMB [83, 148] (although no dedicated templates have been imple-
mented so far for examining current CMB data); in the future, galaxy surveys can also
o↵er opportunities for testing the angular dependence of squeezed bispectra [149, 150].

• Tensor-scalar-scalar three-point functions can also be enhanced, to a level which can
be tested through B-modes searches of tensor non-Gaussianity [128, 151]. Such ef-
fects also enhance the scalar 4pt function, leading to a peculiar angular dependence
distinguishable from a trispectrum amplitude ⌧NL signal, as recently pointed out in
ref. [144].

Any one of these additional e↵ects, if detected, would provide strong hints in favour of
scenarios breaking space-reparametrization during inflation. With the same spirit of the
EFT of inflation [117], our constraints on the physical observables of the theory, automatically
translate to operators appearing in the quadratic action for the tensor field. In this sense,
LISA has the possibility to test symmetry breaking patterns and models of the early Universe
at smaller scales than the ones probed by CMB.

6 Gravitational wave background from merging PBHs

It has been known for some time [152] that large peaks in the matter power spectrum can
give rise to primordial black holes (PBH) with masses of order a few solar masses, when those
scales reenter the horizon during the radiation era. They typically give rise to a population
of isolated PBH that could act as cold dark matter, see also [153]. Recently, however, it has
been pointed out that in very generic hybrid models with long-lasting waterfall regimes, the
peak in the spectrum is not only large but very broad [154]. In those cases, the production
of massive PBH occurs in clusters, which subsequently merge during the matter era, soon
after recombination, creating a stochastic background of GWs that lie, for large PBH masses
(MPBH ⇠ 102 � 104M�), just within the range of LISA sensitivity [155]. These PBHs could
constitute today all of the DM, and act as seeds for early galaxy formation, thus making
the detection of the GWs background from merging of PBHs at high redshift a tantalizing
signature of structure formation [154]. It has been pointed out that these PBH could have
already been detected by AdvLIGO [156–159]. In the near future we may be able to measure
the broad PBHmass distribution with ground and space interferometers [155, 157]. Moreover,
the full mass range constraints on PBH as DM were recently described in ref. [100].
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6.1 Waterfall hybrid inflation model

Hybrid inflation models end inflation when a symmetry breaking field  triggers a quantum
phase transition, while the inflaton � is still in slow-roll. The original hybrid potential, with
a constant plus a quadratic term, predicts a blue-tilted scalar spectrum which is ruled out
by Planck, but other closely related models, like inverted hybrid, can be constructed, see
also [160]. Here we have considered a more general form for the e↵ective potential close to
the critical point of instability: it exhibits a negative curvature in order to generate a red
spectrum, plus a linear term in � to control the duration of the waterfall phase. The two-field
potential reads

V (�, ) = ⇤

"✓
1�  2

v2

◆2

+
(�� �c)

µ1
� (�� �c)2

µ2
2

+
2�2 2

�2cv
2

#
. (6.1)

Initially, inflation takes place along the valley  = 0. Below the critical value �c, this
potential develops a tachyonic instability, forcing the field trajectories to reach one of the
global minima, located at � = 0,  = ±v. Apart from the negative curvature and the
additional linear term, the potential is identical to the one of the original hybrid model.

The slope and the curvature of the potential at the critical point are thus controlled
respectively by the mass parameters µ1 and µ2. We assume that µ1 is su�ciently large
compared to µ2 for the slope along the valley to be constant over the range of scales going
from scales relevant to CMB anisotropies down do scales that exit the Hubble radius at the
critical instability point. At � = �c, the slow-roll approximation is valid and the first and
second Hubble-flow slow-roll parameters are given by

✏1�c
=

M2
Pl

2

✓
V 0

V

◆2

=
M2

Pl

2µ2
1

, (6.2)

✏2�c
= 2M2

Pl

"✓
V 0

V

◆2

� V 00

V

#
= 2M2

Pl

✓
1

µ2
1

+
2

µ2
2

◆
. (6.3)

where Mp is the reduced Planck mass and a prime denotes the derivative with respect to the
field �. In the regime of interest, µ1 � µ2 and the scalar spectral index, given by

ns = 1� 2✏1⇤ � ✏2⇤ ' 1� 4M2
Pl

µ2
2

(6.4)

is dominated by the contribution of the second slow-roll parameter. The star index denotes
quantities evaluated at the time t⇤ when k⇤ = a(t⇤)H(t⇤) with k⇤ = 0.05 Mpc�1 being the
pivot scale used by Planck. If the scalar spectral index is given by the best fit value from
Planck (2015), ns ' 0.967, one obtains

µ2 =
2MPlp
1� ns

' 10MPl . (6.5)

The scalar power spectrum amplitude is also measured by Planck and is given at the pivot
scale by

P⇣(k⇤) =
H2

⇤
8⇡2M2

Pl✏1⇤
' ⇤µ2

1

12⇡2M6
Pl

✓
k⇤
k�c

◆ns�1

= 3.06⇥ 10�9. (6.6)
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The second equality is derived by using the Friedmann equation in slow-roll H2 ' V/3M2
p .

This leads to a relation between the ⇤ and µ1 parameters,

⇤ ' 3.06⇥ 10�9 ⇥ 12⇡2M6
Pl

µ2
1

, (6.7)

where we have considered for simplicity the case of instantaneous reheating [161]. Thus
via the CMB, ⇤ and µ1 are closely related. On the other hand, the amplitude of tensor
fluctuations at CMB scales from this model is characterized by H2 ' ⇤/3M2

p and

r =
8M2

Pl

µ2
1

. 0.07 =) µ1 & 10MPl . (6.8)

Therefore, CMB observables fix some of the parameters, but leave others free. We will
see that observations of a GW background associated with a peak in the matter power
spectrum at scales well below those of CMB and LSS will be able to further constrain the
model. Let us explore here the waterfall regime responsible for such a peak in the scalar
fluctuation spectrum.

6.2 Waterfall phase

Due to the tachyonic instability, the symmetry breaking field  will go through a process of
quantum di↵usion at the critical point �c, starting the waterfall phase. This process may
take less than an e-fold, and end inflation like the usual hybrid scenario, or take a few e-
folds, during which backreaction on the scalar produces a sharp peak in the scalar metric
fluctuations, responsible for PBH production at reentry, as first suggested in ref. [152]. If the
di↵usion process is slow it may take several e-folds to complete and the peak will be broad,
as first discussed in ref. [154]. We will consider here scenarios of the last type.

During di↵usion we can treat the symmetry breaking field as a Gaussian random variable
whose width at the critical point of instability can be calculated by integrating the quantum
stochastic dynamics of  [152, 162, 163],

 0 ⌘
p

h 2i =
✓

⇤

96⇡3/2v
p
2�cµ1

◆1/2

, (6.9)

where brackets denote averaging in real space. Note that quantum di↵usion only plays a role
very close to the critical instability point and that classical dynamics is quickly recovered.
Quantum e↵ects taking place after crossing �c actually influence only marginally the waterfall
dynamics, but we have taken into account that di↵erent classical evolutions can emerge from
various initial values  i. For each parameter set, the classical two-field dynamics is integrated
numerically over many realizations of  i, distributed according to a Gaussian of width  0.
Then the mean scalar power spectrum is obtained by averaging over all realizations. Since
each realization can be more or less e�cient in producing PBH (which is a non-linear process),
the same averaging procedure is applied for the calculation of the fraction of the Universe
that collapses into PBHs.

Note also that the inflaton field � remains classical during the waterfall phase and drives
the expansion of the Universe in the regime where the stochastic dynamics of  is important.
One can solve the two-field dynamics during the waterfall regime by introducing the notation

� ⌘ �ce
⇠,  ⌘  0e

� . (6.10)
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During the waterfall, as long as the slow-roll approximation is valid, we have |⇠| ⌧ 1. One
therefore has � ' �c(1 + ⇠) and the evolution equations for the scalar fields in the slow-roll
approximation reduce to

3H ⇠̇ ' �2⇤
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1

✓
1 +

2µ2
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2

v2�2c

◆
, (6.11)
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 2
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◆
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During phase-1, the second term of eqs. (6.11) and (6.12) are by definition negligible. At
some time, the second term in the r.h.s. of eq. (6.11) becomes larger than unity and the
dynamics enters into phase-2. Integrating the slow-roll equations in phase-1 gives the field
trajectories ⇠2 = � v2/4µ1 �c. The total number of e-folds in phase-1 is given by
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v
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is the value of � at the transition point between phase-1 and phase-2. The duration of the
second phase is well approximated by
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which determines the time of the transition. Finally, inflation ends when the slow-roll ap-
proximation breaks down for the field  , at ⇠end = �v2/8M2

p . The final number of e-folds
from the waterfall to the end of inflation is
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' 2⇧ , (6.16)

which is just a function of ⇧.

6.3 Matter power spectrum and formation of primordial black holes

The power spectrum of scalar perturbations can be calculated numerically by integrating both
the classical exact homogeneous dynamics and the linear perturbations. We have checked
that these results coincide with the analytical expressions we obtained with the �N formalism.
The power spectrum at the peak can be written as [154]

P⇣(k) =
⇧3

p
2⇡

⇥ exp

"
�4(Nc �Nk)

2

⇧2

#
, (6.17)

which is maximal at the critical point of instability, Nc e-folds before the end of inflation. The
mild waterfall therefore induces a broad peak in the scalar power spectrum for modes leaving
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Figure 16. Power spectrum of scalar perturbations for parameters valuesM = 0.1Mp, µ1 = 3⇥105Mp

and �c = 0.125Mp (red), �c = 0.1Mp (blue) and �c = 0.075Mp (green), �c = 0.1Mp (blue) and
�c = 0.05Mp (cyan). Those parameters correspond respectively to ⇧2 = 375/300/225/150. The power
spectrum is degenerate for lower values of M,� and larger values of µ1, keeping the combination ⇧2

constant. For larger values of M,�c the degeneracy is broken: power spectra in orange and brown
are obtained respectively for M = �c = Mp and µ1 = 300Mp/225Mp. Dashed lines assume  c =  0

whereas solid lines are obtained after averaging over 200 power spectra obtained from initial conditions
on  c distributed according to a Gaussian of width  0. The power spectra corresponding to these
realizations are plotted in dashed light gray for illustration. The ⇤ parameter has been fixed so that
the amplitude of the spectrum on CMB scales is in agreement with Planck data. The parameter
µ2 = 10Mp so that the scalar spectral index on those scales is given by ns = 0.96.

the horizon in phase-1, just before the critical point. Depending of the model parameters,
the scalar perturbations can exceed a threshold value, leading to the formation of PBH.

In figure 16 the power spectrum of scalar perturbations has been plotted for di↵erent
values of the parameters. This shows the strong enhancement of power not only for the
modes exiting the Hubble radius in phase-1, but also for modes becoming super-horizon
before field trajectories have crossed the critical point. One can observe that if the waterfall
lasts for about 35 e-folds then the modes corresponding to 35 . Nk . 50 are also a↵ected.
As expected one can see also that the combination of parameters ⇧ drives the modifications
of the power spectrum. We find that it is hard to modify independently the width, the height
and the position of the peak in the scalar power spectrum, since they are all correlated.

Peaks in the matter power spectrum collapse to form black holes when scalar fluctuations
of large amplitude re-enter the horizon during the matter era. For gravitational collapse to
end in the formation of a black hole one needs the amplitude of the fluctuation to be above a
certain critical value ⇣c that has been evaluated both analytically and numerically. A recent
analysis suggests ⇣c ' 0.03� 0.3. We will take, for definiteness, ⇣c = 0.1.

Assuming that the probability distribution of density perturbations are Gaussian, one
can evaluate the fraction � of the Universe collapsing into primordial black holes of mass M
at the time of formation tM as

�form(M) ⌘ ⇢PBH(M)
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����
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=

Z 1

⇣c

d⇣p
2⇡�
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2
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✓
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◆
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In the limit where � ⌧ ⇣c, one gets

�form(M) =
�p
2⇡ ⇣c

e�
⇣2c
2�2 . (6.19)
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The variance � of scalar perturbations is related to the power spectrum through h⇣2i = �2 =
P⇣(kM ), where kM is the wavelength of the mode re-entering inside the Hubble radius at
time tM .

In our scenario of mild waterfall, the peak in the power spectrum of scalar perturbations
is broad and covers several order of magnitudes in wavenumber. Therefore, instead of a
distribution of black holes that would be close to monochromatic, which is easy to evolve in
the radiation era, one expects that PBH have a broad mass spectrum and form at di↵erent
times in the radiation era. Since the energy density associated to PBH of mass M decreases
like ⇠ a�3 due to expansion, the contribution of PBH to the total energy density in the
radiation era grows like ⇠ a. As a result, at the end of the radiation era, PBH with low
masses, forming earlier, contribute more importantly to the total energy density than more
massive ones, forming later, given identical values of �form.

Taking into account those considerations, during the radiation-dominated era, the frac-
tion of the Universe that has collapsed into primordial black-holes of mass Mk evolves as

d�(Mk, N(t))

dN
= �(Mk, N(t)) . (6.20)

Note that we have neglected evaporation through Hawking radiation since it is relevant
only for PBH with very low masses that are formed immediately after inflation. These
are very subdominant in our model due to the duration of the waterfall. In order to get
�eq ⌘ �(Mk, N(teq)), this equation must be integrated over cosmic history, from the time of
PBH formation until matter-radiation equality. For all the considered scalar power spectra,
the formation of PBH stops before Neq (corresponding to ln(aeq/a0) ' �8), since the vari-
ance of scalar perturbations can be close or overpass the threshold value only in the range
�40 . �Nk . 10.

The total density of PBHs at radiation-matter equality is obtained by integrating �eq

over masses:

⌦PBH(zeq) =

Z Mteq

0
�(M,Neq)d lnM. (6.21)

eqs. (6.20) and (6.21) have been solved numerically using bins �N = 1, corresponding to
� lnM = 2. At matter-radiation equality one has ⌦M (teq) = 0.5 and PBH constitute the
totality of the dark matter if ⌦PBH(teq) ' 0.42, the rest coming from baryons. For simplicity
we have neglected the matter contribution to the Universe expansion in the radiation era.
This e↵ect is only important close to matter-radiation equality, when all PBH are formed,
and it is expected to be compensated by a small variation of ⇣c.

For the parameter sets considered in figure 16, we have found the value of ⇣c that give
rise to the right amount of dark matter. They are reported in table 2. This must not
be seen as an accurate result, because the matter contribution to the Universe’s expansion
is not accounted for in eq. (6.20) even though it is not negligible in the last few e-folds
before reaching matter-radiation equality. This e↵ect reduces the value of �eq, which must
be compensated by a lower value of ⇣c to get the right amount of dark matter (thus values
⇣c/⇣c, fid of a few tens can still be seen as realistic).

The masses of PBH can be computed very approximately by the mass within the horizon
at the time the large fluctuation re-enters during the radiation era. This gives

MPBH(N) = �
4⇡M2

Pl

HN
e2N = 0.65 g

� µ1

MPl
e2N ' 30M�

µ1

10MPl
e2(N�39.9) , (6.22)
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⇧2 (µ1, v,�c), in Mp ⇣c/⇣c,fid

375 (3⇥ 105, 0.1, 0.125) 88.06

300 (3⇥ 105, 0.1, 0.1) 18.96

300 (3⇥ 108, 0.01, 0.01) 17.37

300 (3⇥ 102, 1.0, 1.0) 49.60

225 (3⇥ 105, 0.1, 0.075) 2.009

225 (2.25⇥ 102, 1.0, 1.0) 5.211

150 (3⇥ 105, 0.1, 0.05) 0.0487

Table 2. Critical value ⇣c of scalar fluctuation (2nd column) leading to PBH formation with
⌦PBH(zeq) = 0.42 at matter radiation equality, for several sets of the model parameters (1st column).
The fiducial value is ⇣c, fid = 0.1.

where � ' 0.2 is an unknown factor describing the e�ciency of collapse, and we have
used eq. (6.7).

The mass range for PBHs is very broad, 10�20M� . MPBH . 105M�. But given one
set of parameters, the mass spectrum typically covers 3-5 orders of magnitudes at matter-
radiation equality. Given ⇧2, we find that PBH can be made arbitrarily massive by increasing
µ1 and reducing v and �c. This lowers the energy scale of inflation and thus increases PBH
masses, but this does not a↵ect importantly the shape of the mass spectrum. Therefore it
is easy to find parameters for which the mass spectrum peaks in the range where there is
no solid observational constraints. It is also possible that the peak in the mass spectrum
is located on planet-like masses at recombination (so that CMB distortion constraints are
satisfied), but evade micro-lensing limits of PBHs abundances if merging induces their growth
by more than two or three orders of magnitudes during cosmic history. Finally, the width of
the peak in �eq is reduced for lower values of ⇧2, as expected given that it is related to the
broadness of the peak in the scalar power spectrum. It is therefore possible, in principle, to
control this width, but note that the range where ⇧2 can vary is rather limited by the value
of ⇣c, which needs to be realistic.

6.4 Gravitational waves from inspiralling PBHs

Here we will assume that PBHs are distributed as a broad lognormal distribution

PDF (m) =
1

m
p
2⇡�2

exp

✓
� log2(m/µ)

2�2

◆
, (6.23)

see figure 17a, coming from peaks in the power spectrum produced during inflation (e.g.
during slow-waterfall hybrid inflation), which reenter inside the horizon during the radiation
epoch and collapse to form black holes of di↵erent masses that are clustered and start to
coalesce after recombination.

For the mild-waterfall hybrid inflation model of the previous section, the mean mass µ
is given by eq. (6.22) at N = Nc, the number of e-folds to the end of inflation (6.16), which
depends on the model parameter µ1, while the dispersion � is simply given by ⇧ in (6.14).
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The gravitational wave background from inspiraling black holes can be obtained
straightforwardly from the GWs emission of binary systems, see ref. [164],

⌦GW(f) =
2⇡2

3H2
0

f2 h2c(f) ⌘
1

⇢c

d ⇢GW

d ln f
, (6.24)

where
d ⇢GW

d ln f
=

Z 1

0

dz

1 + z

dn

dz

⇡2/3

3c2
M5/3

c (Gfr)
2/3 , (6.25)

with M5/3
c = m1m2(m1 +m2)�1/3 the chirp mass and fr = f(1 + z) the restmass frequency

at the source. The number density of GW events within the redshift interval [z, z + dz] is
given in terms of the merger rate in a comoving volume ⌧merger as

dn

dz
= ⌧merger

dt

dz
=

⌧merger

H(z)(1 + z)
, (6.26)

with the Hubble rate given by ⇤CDM, H2(z) = H2
0

h
⌦M(1 + z)3 + ⌦⇤

i
. Assuming a con-

stant merger rate as a function of redshift, and doing the integral over redshift one finds an
amplitude of GWs from inspiraling PBHs

hc(f) = 1.14⇥ 10�25 ⌧1/2merger

✓
f

Hz

◆�2/3✓Mc

M�

◆5/6

, (6.27)

with typical values are ⌧merger ' 50 yr�1Gpc�3 in the AdvLIGO detectors.
We can now integrate over masses with a broad mass distribution like (6.23) for both

m1 and m2, with the same parameters (µ, �). This gives the final expression [157]

h2⌦GW(f) = 8.15⇥ 10�15 ⌧merger

✓
f

Hz

◆2/3✓ µ

M�

◆5/3

R(�) , (6.28)

R(�) =
e

793
882 �2

1245889

⇣
639009 + 583443 e

2
21 �2

+ 30429 e
40
21 �2 � 9177 e

122
21 �2

+ 2185 e
82
7 �2

⌘
,

which becomes R(� = 0) = 1 for a monochromatic spectrum with massM = µ, see figure 18a.
The width of the mass spectrum is extremely important and can give a tremendous boost to
the GWs background amplitude.
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We have assumed here a merger rate of 50 events per year and Gpc3.

One can see in figure 17b a concrete case of the stochastic GW background from PBHs
with µ = 13.1M� and � = 0.2 which could easily be detected by LISA.

It is clear that, from the point of view of parameter space, that there is a degeneracy
between the merger rate and the mean mass µ, which satisfies ⌧merger ⇥ µ5/3(M�) = const.
Therefore, we will choose here to fix the merger rate to the middle of the range found by
AdvLIGO, ⌧merger = 50 events/yr/Gpc3, and leave the mass µ free, together with the width
� of the PDF (6.23).

Now, taking into account the LISA sensitivity from the various configurations (A5M5
to A1M2), we notice that these particular GWs from inspiraling PBHs, with tilt nT = 2/3,
can be detectable by LISA in a very wide range of parameters of the model. We plot the
possible parameter range in figure 18b.

7 Discussion and conclusions

We have investigated the potential of the LISA space-based interferometer to detect the
stochastic gravitational wave background produced from di↵erent mechanisms during infla-
tion. We have focused on well-motivated scenarios which produce GW backgrounds with a
large amplitude and tilt, very di↵erently from the almost scale-invariant irreducible back-
ground due to vacuum tensor modes. We have studied the resulting GW signal from particle
production during inflation (section 3), inflationary spectator fields with varying speed of
sound (section 4), e↵ective field theories of inflation with new symmetry patterns (section 5)
and inflationary models leading to the formation of primordial black holes (section 6). We
have used the projected sensitivities of LISA in a model-independent way for various detec-
tor designs and configurations, demonstrating that LISA is capable of probing these well-
motivated inflationary scenarios.

In the case of particle production during inflation, we have considered a broad class of
well-motivated inflation models, where the inflaton � is coupled to gauge fields via �

f Fµ⌫ F̃µ⌫ .
This operator, generally expected to be present in shift-symmetric models of inflation, leads to
the amplification of the vacuum fluctuations of the gauge field, which in their turn are a source
of GWs. The parity-violating and highly non-Gaussian nature of these gravitational waves is
the smoking gun of this mechanism. We have presented two di↵erent ways of characterizing
the detectability by LISA of the GWs generated this way. First, we have focused only on
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the dynamics of the system at LISA scales, connecting the amplitude and tilt of the signal

to the parameter ⇠ = �̇
2 f H , that characterizes the strength of the inflaton-gauge coupling,

and to the parameters that describe the inflationary dynamics at those scales. Our findings,
summarized in figures 5 and 6, show that models with a Hubble rate H & 5 · 1011 GeV
can produce a GW signal within LISA’s reach if the parameter ⇠ takes a value in the range
4 . ⇠ . 5.5. Then we have considered, in a less model independent but more powerful
way, the global dynamics of the system, accounting for the constraints from observations at
scales that are much larger (CMB) and much smaller (PBHs, e↵ective number of neutrinos)
than the LISA ones. This mechanism can thus provide a powerful probe of the dynamics of
inflation during the ⇠ 30 e-folds that separate CMB scales to LISA ones.

In the case of having inflationary spectator fields present during inflation, classical pro-
duction of GWs also takes place. The amplitude and spectral index of such a GW background
turn out to be determined by the sound speed of the spectator field(s), as well as by the time
variation of the latter. Interestingly, this GW background can be expected to be blue tilted
and to exceed the sensitivity of LISA. Considering the parameter space which describes the
spectator sector, we found that LISA is expected to add information which are complemen-
tary to the constraints provided by current CMB measurements. At the same time, the best
configuration of LISA is expected to slightly improve current bounds obtained from others
GW experiments at small scales. We notice that comparing contraints at CMB scales with
bounds at smaller scales, provides the possibility of discriminating between di↵erent infla-
tionary GW signals. Let us recall that a complete computation of the scalar power spectrum
and its related non-Gaussianity is still missing and this may impact on the results of our
analysis, in particular changing the conclusions about PBH bounds.

We have considered scenarios where space-reparametrization can be spontaneously bro-
ken during inflation. Then, there is no symmetry preventing the graviton from having a
mass during inflation. We examined this possibility using an approach based on EFT of
inflation, including scenarios where the tensors can have generic sound speed. These prop-
erties influence the amplitude and scale dependence of primordial tensor spectrum, allowing
for a blue tensor tilt, and a spectrum enhanced and detectable at LISA frequency scales.
After discussing explicit examples of models with these properties, we focussed our analysis
on a simple, representative case. We showed that, in order for being detectable with LISA,
the graviton mass during inflation should lie within certain ranges, depending on the tensor
sound speed, and the value of the inflationary Hubble parameter. We then presented plots
with the allowed regions in the space of available parameters for ensuring a detection with
LISA. We compared with LIGO detectors, showing that LISA can probe regions of larger size
in parameter space. Finally, we discussed specific predictions of these scenarios in the scalar
inflationary sector, which make models with broken space-reparametrization distinguishable
from other inflationary scenarios with small scale enhancements of the tensor spectrum.

Finally, in the case of certain models of inflation, like the mild-waterfall hybrid model,
or due to particle production well before the end of inflation, large peaks appear in the
matter power spectrum, that later collapse to form primordial black holes, at horizon reentry
during the radiation era. These PBHs are strongly clustered, and merge within the age of
the Universe, generating a stochastic background of GWs that could be detected by LISA.
Some of these late mergings may have already been observed by AdvLIGO. Furthermore,
for certain parameters of the models, these PBHs could constitute all of the dark matter in
the Universe.

In summary, in this paper we have addressed the capability of the LISA mission for
extracting information from the inflationary era, studying the parameter space compatible

– 47 –



J
C
A
P
1
2
(
2
0
1
6
)
0
2
6

with a detection/non-detection of a GW signal with LISA. We have quantified the ability
of LISA to probe inflation, focussing in the above four well motivated family of inflationary
scenarios. Our study clearly assesses that LISA will be able to test the latest stages of the
inflationary period, to probe the couplings of the inflaton to other degrees of freedom, or
simply the presence of extra fields besides the inflaton, and to probe the degree of violation
of the inflationary consistency relation. We have combined our results for LISA with inde-
pendent constraints coming from other probes at di↵erent scales. From our analysis we argue
that measurements of a GW signal on the small scales accessible to LISA, will become of fun-
damental importance in order to provide constraints on tensor perturbations complementary
to the CMB.
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[12] J. Garćıa-Bellido and D.G. Figueroa, A stochastic background of gravitational waves from
hybrid preheating, Phys. Rev. Lett. 98 (2007) 061302 [astro-ph/0701014] [INSPIRE].
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self-ordering scalar fields, JCAP 10 (2009) 005 [arXiv:0908.0425] [INSPIRE].

[50] D.G. Figueroa, M. Hindmarsh and J. Urrestilla, Exact scale-invariant background of
gravitational waves from cosmic defects, Phys. Rev. Lett. 110 (2013) 101302
[arXiv:1212.5458] [INSPIRE].

[51] S. Olmez, V. Mandic and X. Siemens, Gravitational-wave stochastic background from kinks
and cusps on cosmic strings, Phys. Rev. D 81 (2010) 104028 [arXiv:1004.0890] [INSPIRE].
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