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COMPUTATION OF GENERALIZED MATRIX FUNCTIONS

FRANCESCA ARRIGO,† MICHELE BENZI,‡ AND CATERINA FENU§

Abstract. We develop numerical algorithms for the efficient evaluation of quantities associated
with generalized matrix functions [J. B. Hawkins and A. Ben-Israel, Linear and Multilinear Algebra,
1(2), 1973, pp. 163–171]. Our algorithms are based on Gaussian quadrature and Golub–Kahan
bidiagonalization. Block variants are also investigated. Numerical experiments are performed to
illustrate the effectiveness and efficiency of our techniques in computing generalized matrix functions
arising in the analysis of networks.
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network communicability

AMS subject classifications. 65F60, 15A16, 05C50

1. Introduction. Generalized matrix functions were first introduced by Hawkins
and Ben-Israel in [15] in order to extend the notion of a matrix function to rectangular
matrices. Essentially, the definition is based on replacing the spectral decomposition
of A (or the Jordan canonical form, if A is not diagonalizable) with the singular
value decomposition, and evaluating the function at the singular values of A, if de-
fined. While it is likely that this definition was inspired by the analogy between the
inverse and the Moore–Penrose generalized inverse, which is well established in nu-
merical linear algebra, [15] is a purely theoretical paper and does not mention any
potential applications or computational aspects. The paper appears to have gone
largely unnoticed, despite increasing interest in matrix functions in the numerical lin-
ear algebra community over the past several years; for instance, it is not cited in the
important monograph by Higham [16]. While it is likely that the perceived scarcity
of applications is to blame (at least in part) for this lack of attention, it turns out
that generalized matrix functions do have interesting applications and have actually
occurred in the literature without being recognized as such; see section 4 for some
examples.

In this paper we revisit the topic of generalized matrix functions, with an empha-
sis on numerical aspects. After reviewing the necessary background and definitions,
we consider a few situations naturally leading to generalized matrix functions. Moving
on to numerical considerations, we develop several computational approaches based
on variants of Golub–Kahan bidiagonalization to compute or estimate bilinear forms
involving generalized matrix functions, including entries of the generalized matrix
function itself and the action of a generalized matrix function on a vector. We fur-
ther consider block variants of Golub–Kahan bidiagonalization which can be used to
evaluate matrix-valued expressions involving generalized matrix functions. Numeri-
cal experiments are used to illustrate the performance of the proposed techniques on
problems arising in the analysis of directed networks.
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2 F. Arrigo, M. Benzi, and C. Fenu

2. Background. In this section we review a few basic concepts from linear
algebra that will be used throughout the paper, mostly to set our notation, and
recall the notion of generalized matrix function.

Let A ∈ Cm×n and let r be the rank of A. We can factor the matrix A as
A = UΣV ∗ using a singular value decomposition (SVD). The matrix Σ ∈ R

m×n is
diagonal and its entries Σii = σi are ordered as σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · =
σq = 0, where q = min{m,n}. The r positive σi are the singular values of A. The
matrices U = [u1,u2, . . . ,um] ∈ Cm×m and V = [v1,v2, . . . ,vn] ∈ Cn×n are unitary
and contain the left and right singular vectors of A, respectively. It is well known
that the matrix Σ is uniquely determined, while U and V are not. If A is real, then
U and V can be chosen to be real. From the singular value decomposition of a matrix
A it follows that AA∗ = UΣΣTU∗ and A∗A = V ΣTΣV ∗. Thus, the singular values
of a matrix A are the square roots of the positive eigenvalues of the matrix AA∗ or
A∗A. Moreover, the left singular vectors of A are the eigenvectors of the matrix AA∗,
while the right singular vectors are the eigenvectors of the matrix A∗A. The singular
values of a matrix also arise (together with their opposites) as the eigenvalues of the
Hermitian matrix

(2.1) A =

(
0 A
A∗ 0

)
.

This can be easily seen for the case m = n; indeed, under this hypothesis, the spectral
factorization of A is given by [17]:

A =
1

2

(
U −U
V V

)(
Σ 0
0 −Σ

)(
U −U
V V

)∗
.

Consider now the matrices Ur ∈ Cm×r and Vr ∈ Cn×r which contain the first r
columns of the matrices U and V , respectively, and let Σr ∈ Rr×r be the r×r leading
block of Σ. Then a compact SVD (CSVD) of the matrix A is

A = UrΣrV
∗
r =

r∑

i=1

σiuiv
∗
i .

2.1. Matrix functions. There are several equivalent ways to define f(A) when
A ∈ Cn×n is a square matrix. We recall here the definition based on the Jordan
canonical form. For a comprehensive study of matrix functions, we refer to [16].

Let {λ1, λ2, . . . , λs} be the set of distinct eigenvalues of A and let ni denote the
index of the ith eigenvalue, i.e., the size of the largest Jordan block associated with
λi. Recall that a function f is said to be defined on the spectrum of A if the values
f (j)(λi) exist for all j = 0, . . . , ni − 1 and for all i = 1, . . . , s, where f (j) is the jth
derivative of the function and f (0) = f .

Definition 2.1. [16, Definition 1.2] Let f be defined on the spectrum of A ∈ Cn×n

and let Z−1AZ = J = diag(J1, J2, . . . , Jp) be the Jordan canonical form of the matrix,
where

Jk = Jk(λk) =




λk 1

λk
. . .

. . . 1
λk




∈ C
mk×mk ,
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∑p
k=1 mk = n, and Z is nonsingular. Then

f(A) := Zf(J)Z−1 = Z diag(f(J1), f(J2), . . . , f(Jp))Z
−1,

where

f(Jk) :=




f(λk) f ′(λk) · · · f(m
k
−1)(λk)

(mk−1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)




,

If the matrix A is diagonalizable, then the Jordan canonical form reduces to the
spectral decomposition: A = ZDZ−1 with D = diag(λ1, λ2, . . . , λn). In such case,
f(A) = Z diag(f(λ1), f(λ2), . . . , f(λn))Z

−1.
If the function f has a Taylor series expansion, we can use it to describe the

associated matrix function, provided that the eigenvalues of the matrix A satisfy
certain requirements.

Theorem 2.2. [16, Theorem 4.7] Let A ∈ Cn×n and suppose that f can be
expressed as

f(z) =

∞∑

k=0

ak(z − z0)
k

with radius of convergence R. Then f(A) is defined and is given by

f(A) =

∞∑

k=0

ak(A− z0I)
k

if and only if each of the distinct eigenvalues of A {λ1, λ2, . . . , λs} satisfies one of the
following:

(i) |λi − z0| < R;
(ii) |λi − z0| = R and the series for f (ni−1)(λ) is convergent at the point λ = λi,

i = 1, 2, . . . , s.

2.2. Generalized matrix functions. In [15] the authors considered the prob-
lem of defining functions of rectangular matrices. Their definition relies on the fol-
lowing generalization of the SVD.

Theorem 2.3. Let A ∈ Cm×n be a matrix of rank r and let {ci : i = 1, 2, . . . , r}
be any complex numbers satisfying

|ci|2 = σ2
i = λi(AA

∗),

where λ1(AA
∗) ≥ λ2(AA

∗) ≥ · · · ≥ λr(AA
∗) > 0 are the positive eigenvalues of

AA∗. Then there exist two unitary matrices X ∈ Cm×m and Y ∈ Cn×n such that
D = X ∗AY ∈ Cm×n has entries:

dij =

{
ci if 1 ≤ i = j ≤ r ,
0 otherwise.

From this theorem it follows that, once the non-zero entries of D are fixed, A can be
written as

(2.2) A = XDY∗ = XrDrY∗
r ,
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where Dr is the leading r× r block of D and the matrices Xr ∈ Cm×r and Yr ∈ Cn×r

consist of the first r columns of the matrices X and Y , respectively.

In this paper we do not make use of the extra degrees of freedom provided from
this (slightly) more general SVD ofA, and we assume that ci = σi for all i = 1, 2, . . . , r.
This assumption ensures that the decompositions in (2.2) coincide with the SVD and
CSVD of the matrix A, respectively. In particular, D = Σ, X = U , and Y = V .
All the definitions and results presented in the remaining of this section and in the
next one can be extended to the case when the coefficients {ci : i = 1, 2, . . . , r}
do not necessarily coincide with the singular values, but satisfy the hypothesis of
Theorem 2.3.

Definition 2.4. Let A ∈ Cm×n be a rank r matrix and let A = UrΣrV
∗
r be

its CSVD. Let f : R → R be a scalar function such that f(σi) is defined for all
i = 1, 2, . . . , r. The generalized matrix function f⋄ : Cm×n → Cm×n induced by f is
defined as

f⋄(A) := Urf(Σr)V
∗
r ,

where f(Σr) is defined for the square matrix Σr according to definition 2.1 as

f(Σr) = diag(f(σ1), f(σ2), . . . , f(σr)).

As already mentioned in the Introduction, generalized matrix functions arise, for
instance, when computing f(A ), where A is the matrix defined in (2.1). Indeed, if
one uses the description of matrix function in terms of power series f(z) =

∑∞
k=0 akz

k,
it is easy to check that, within the radius of convergence:

f(A ) =

(
feven(

√
AA∗) f⋄

odd(A)

f⋄
odd(A

∗) feven(
√
A∗A)

)
,

where

f(z) = feven(z) + fodd(z) =
∞∑

k=0

a2kz
2k +

∞∑

k=0

a2k+1z
2k+1.

Remark 1. If f(0) = 0 and the matrix A ∈ Cn×n is Hermitian positive semidef-
inite, then the generalized matrix function f⋄(A) reduces to the standard matrix
function f(A). If the more general decomposition of Theorem 2.3 is used instead,
then the generalized matrix function reduces to f(A) if f(0) = 0 and the matrix
A ∈ Cn×n is normal, as long as f is defined on the ci; see [15].

Remark 2. The Moore–Penrose pseudo-inverse of a matrix A ∈ Cm×n, denoted
by A†, can be expressed as f⋄(A∗), where f(z) = z−1. Equivalently, f⋄(A) = (A†)∗

when f(z) = z−1. Hence, there is a slight disconnect between the definition of gen-
eralized matrix function and that of generalized inverse. This small issue could be
addressed by defining a generalized matrix function corresponding to the scalar func-
tion f as f⋄(A) = Vrf(Σr)U

∗
r , so that the generalized matrix function of an m × n

matrix is an n × m matrix, and f⋄(A) = A† when f(z) = z−1. However, doing so
would lead to the undesirable property that f⋄(A) = A∗ for f(z) = z, as well as other
problems.
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3. Properties. In this section we review some properties of generalized matrix
functions and we summarize a few new results.

Letting Ei = uiv
∗
i and E =

∑r
i=1 Ei, we can write

A =
r∑

i=1

σiuiv
∗
i =

r∑

i=1

σiEi,

and thus it follows that

(3.1) f⋄(A) =

r∑

i=1

f(σi)uiv
∗
i =

r∑

i=1

f(σi)Ei.

Proposition 3.1. (Sums and products of functions [15]). Let f, g, h : R → R be
scalar functions and let f⋄, g⋄, h⋄ : Cm×n → Cm×n be the corresponding generalized
matrix functions. Then:

(i) if f(k) = k, then f⋄(A) = kE;
(ii) if f(z) = z, then f⋄(A) = A;
(iii) if f(z) = g(z) + h(z), then f⋄(A) = g⋄(A) + h⋄(A);
(iv) if f(z) = g(z)h(z), then f⋄(A) = g⋄(A)E∗h⋄(A).

In the following we prove a few properties of generalized matrix functions.

Proposition 3.2. Let A ∈ C
m×n be a matrix of rank r. Let f : R → R be a

scalar function and let f⋄ : Cm×n → Cm×n be the induced generalized matrix function,
assumed to be defined at A. Then the following properties hold true.

(i) [f⋄(A)]∗ = f⋄(A∗);
(ii) let X ∈ Cm×m and Y ∈ Cn×n be two unitary matrices, then f⋄(XAY ) =

X [f⋄(A)]Y ;
(iii) if A = diag(A11, A22, . . . , Akk), then

f⋄(A) = diag(f⋄(A11), f
⋄(A22), . . . , f

⋄(Akk));

(iv) f⋄(Ik ⊗A) = Ik ⊗ f⋄(A), where Ik is the k × k identity matrix and ⊗ is the
Kronecker product;

(v) f⋄(A⊗ Ik) = f⋄(A)⊗ Ik.

Proof.

(i) From (2.2) it follows that A∗ = VrΣrU
∗
r , and thus

f⋄(A∗) = Vrf(Σr)U
∗
r = [Urf(Σr)V

∗
r ]

∗ = [f⋄(A)]∗.

(ii) The result follows from the fact that unitary matrices form a group under
multiplication and that the rank of a matrix does not change under left or
right multiplication by a nonsingular matrix [17]. Indeed, the matrix B :=
XAY has rank r and thus

f⋄(B) = f⋄(XUΣV ∗Y ) = (XU)rf(Σr)[(Y
∗V )r]

∗

= XUrf(Σr)V
∗
r Y = Xf⋄(A)Y.

where (XU)r and (V ∗Y )r are the matrices containing the first r columns of
(XU) and (V ∗Y ), respectively.
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(iii) Let Aii = Ui,riΣi,riV
∗
i,ri

be the CSVD of the rank-ri matrix Aii for i =
1, 2, . . . , k. Then A = UrΣrV

∗
r = UrDrV

∗
r , where

Σr = PT
DrP := PT diag (Σ1,r1 , Σ2,r2 , . . . , Σk,rk)P

is a diagonal matrix whose diagonal entries are ordered (via the permutation
matrix P ) in non-increasing order, and

Ur = UrP := diag (U1,r1 , U2,r2 , . . . , Uk,rk)P,

Vr = VrP := diag (V1,r1 , V2,r2 , . . . , Vk,rk)P.

From the definition of generalized matrix function and from some basic prop-
erties of standard matrix functions [16] it follows that

f⋄(A) = Urf(Σr)V
∗
r = Urf(Dr)V

∗
r

= Ur diag (f(Σ1,r1), f(Σ2,r2), . . . , f(Σk,rk))V
∗
r

= diag
(
U1,r1f(Σ1,r1)V

∗
1,r1 , U2,r2f(Σ2,r2)V

∗
2,r2 , . . . , Uk,rkf(Σk,rk)V

∗
k,rk

)

= diag (f⋄(A11), f
⋄(A22), . . . , f

⋄(Akk)) .

(iv) The result follows from (iii) and the fact that Ik ⊗ A = diag(A,A, . . . , A) is
a km× kn diagonal block matrix with k copies of A on the main diagonal.

(v) It follows from (iv) and from the fact that for two general matrices A ∈ Cm×n

and B ∈ Cp×q, there exist two permutation matrices K(p,m) and K(n,q) called
commutation matrices such that K(p,m) (A⊗B)K(n,q) = B ⊗ A (see [21,
Ch. 3]).

The following theorem provides a result for the composition of two functions.

Proposition 3.3. (Composite functions) Let A ∈ Cm×n be a rank-r matrix and
let {σi : 1 ≤ i ≤ r} be its singular values. Assume that h : R → R and g : R → R

are two scalar functions such that h(σi) 6= 0 and g(h(σi)) exist for all i = 1, 2, . . . , r.
Let g⋄ : Cm×n → C

m×n and h⋄ : Cm×n → C
m×n be the induced generalized matrix

functions. Moreover, let f : R → R be the composite function f = g ◦ h. Then the
induced matrix function f⋄ : Cm×n → Cm×n satisfies

f⋄(A) = g⋄(h⋄(A)).

Proof. Let B := h⋄(A) = Urh(Σr)V
∗
r = UrΘrV

∗
r . Since h(σi) 6= 0 for all

i = 1, 2, . . . , r, this matrix has rank r. We want to construct a CSVD of the matrix
B. Let thus P ∈ Rr×r be a permutation matrix such that the matrix Θ̃r = PTΘrP =
PTh(Σr)P has diagonal entries ordered in non-increasing order. Then it follows that

a CSVD of the matrix B is given by B = ŨrΘ̃rṼ
∗
r , where Ũr = UrP and Ṽr = VrP

have orthonormal columns. It thus follows that

g⋄(h⋄(A)) = g⋄(B) = Ũrg(Θ̃r)Ṽ
∗
r = Ug(P Θ̃rP

T )V

= Urg(Θr)V
∗
r = Urg(h(Σr))V

∗
r = Urf(Σr)V

∗
r

= f⋄(A).
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The following result describes the relationship between standard matrix functions
and generalized matrix functions.

Theorem 3.4. Let A ∈ C
m×n be a rank-r matrix and let f : R → R be a scalar

function. Let f⋄ : Cm×n → Cm×n be the induced generalized matrix function. Then

(3.2a) f⋄(A) =

(
r∑

i=1

f(σi)

σi
uiu

∗
i

)
A = A

(
r∑

i=1

f(σi)

σi
viv

∗
i

)
,

or, equivalently,

(3.2b) f⋄(A) = f(
√
AA∗)(

√
AA∗)†A = A(

√
A∗A)†f(

√
A∗A).

Proof. The two identities are an easy consequence of the fact that ui =
1
σi
Avi

and vi =
1
σi

A∗ui for i = 1, 2, . . . , r.

Proposition 3.5. Let A ∈ C
m×n be a rank-r matrix and let f : R → R and

g : R → R be two scalar functions such that f⋄(A) and g(AA∗) are defined. Then

g(AA∗)f⋄(A) = f⋄(A)g(A∗A).

Proof. From A = UrΣrV
∗
r it follows AA∗ = UrΣ

2
rU

∗
r and A∗A = VrΣ

2
rV

∗
r ; thus

g(AA∗)f⋄(A) = Urg(Σ
2
r)U

∗
rUrf(Σr)V

∗
r = Urg(Σ

2
r)f(Σr)V

∗
r

= Urf(Σr)g(Σ
2
r)V

∗
r = Urf(Σr)V

∗
r Vrg(Σ

2
r)V

∗
r

= f⋄(A)g(A∗A).

4. Manifestations of generalized matrix functions. As mentioned in the
Introduction, generalized matrix functions (in the sense of Hawkins and Ben-Israel)
have appeared in the literature without being recognized as such. Here we discuss a
few examples that we are aware of. No doubt there have been other such instances.

In [8], the authors address the problem of computing functions of real skew-
symmetric matrices, in particular the evaluation of the product eAb for a given skew-
symmetric matrix A and vector b using the Lanczos algorithm. The authors observe
that any A ∈ R2n×2n with AT = −A is orthogonally similar to a matrix of the form

(
0 −B
BT 0

)
,

where B is lower bidiagonal of order n. As a consequence, if B = UΣV T is an SVD
of B, the matrix exponential eA is orthogonally similar to the matrix

(4.1)

(
U cos(Σ)UT −U sin(Σ)V T

V sin(Σ)UT V cos(σ)V T

)
,

where the matrix in the upper right block is precisely − sin⋄(B). The authors of [8]
develop computational techniques for the matrix exponential based on (4.1). We also
mention that in the same paper the authors derive a similar expression, also found in
[4], for the exponential of the symmetric matrix A given in (2.1). These expressions
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are extended to more general matrix functions in [20], where they are used to inves-
tigate the off-diagonal decay of analytic functions of large, sparse, skew-symmetric
matrices. Furthermore, in [9] it is shown how these ideas can be used to develop
efficient geometrical integrators for the numerical solution of certain Hamiltonian dif-
ferential systems.

In [6], the authors consider the problem of detecting (approximate) directed bi-
partite communities in directed graphs. Consideration of alternating walks in the
underlying graph leads them to introducing a “non-standard matrix function” of the
form

f(A) = I −A+
AAT

2!
− AATA

3!
+

AATAAT

4!
− · · · ,

where A is the adjacency matrix of the graph. Using A = UΣV T this expression is
readily recognized to be equivalent to

f(A) = U cosh(Σ)UT − U sinh(Σ)V T ,

which is a “mixture” of the standard matrix function cosh(
√
AAT ) and the generalized

matrix function sinh⋄(A).
As mentioned, generalized hyperbolic matrix functions were also considered in [4]

in the context of directed networks, also based on the notion of alternating walks in
directed graphs. In [1], the action of generalized matrix functions on a vector of all
ones was used to define certain centrality measures for nodes in directed graphs; here
the connection with the work of Hawkins and Ben-Israel was explicitly made.

Finally, we mention that generalized matrix functions arise when filter factors are
used to regularize discrete ill-posed problems; see, e.g., [14].

5. Computational aspects. The computation of the generalized matrix func-
tions defined as in Definition 2.4 requires the knowledge of the singular value de-
composition of A. When m and n are large, computing the SVD may be unfeasible.
Moreover, in most applications it is not required to compute the whole matrix f⋄(A);
rather, the goal is often to estimate quantities of the form

(5.1) ZT f⋄(A)W, Z ∈ R
m×k, W ∈ R

n×k,

or to compute the action of the generalized matrix function on a set of k vectors,
i.e., to evaluate f⋄(A)W , usually with k ≪ min{m,n}. For example, computing
selected columns of f⋄(A) reduces to the evaluation of f⋄(A)W where W consists of
the corresponding columns of the identity matrix In, and computing selected entries
of f⋄(A) requires evaluating ZTf⋄(A)W where Z contains selected columns of the
identity matrix Im.

The problem of estimating or giving bounds on such quantities can be tackled,
following [12], by using Gauss-type quadrature rules. As usual in the literature, we
will first analyze the case k = 1; the case of k > 1 will be dealt with in section 6.

5.1. Approximating zTf⋄(A)w. It is known that in certain cases Gauss-type
quadrature rules can be used to obtain lower and upper bounds on bilinear forms like
zT f(A)w, where f(A) is a (standard) matrix function and A = AT . This is the case
when f enjoys certain monotonicity properties. Recall that a real-valued function f
is completely monotonic (c.m.) on an interval I = [a, b] if it is continuous on I and
infinitely differentiable on (a, b) with

(−1)nf (n)(t) ≥ 0, t ∈ (a, b), ∀n = 0, 1, . . . ,
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where f (n) denotes the nth derivative of f and f (0) = f . If f is completely monotonic
on an interval containing the spectrum of A = AT , then one can obtain lower and
upper bounds on quadratic forms of the type uT f(A)u and from these lower and
upper bounds on bilinear forms like zT f(A)w with z 6= w. For a general f , on the
other hand, Gaussian quadrature can only provide estimates of these quantities.

Similarly, in order to obtain bounds (rather than mere estimates) for bilinear ex-
pressions involving generalized matrix functions, we need the scalar functions involved
in the computations to be completely monotonic.

Remark 3. We will be applying our functions to diagonal matrices that contain
the singular values of the matrix of interest. Thus, in our framework, the interval on
which we want to study the complete monotonicity of the functions is I = (0,∞).

We briefly recall here a few properties of c. m. functions; see, e.g., [23, 26] and
references therein for systematic treatments of complete monotonicity.

Lemma 5.1. If f1 and f2 are completely monotonic functions on I, then
(i) αf1(t) + βf2(t) with α, β ≥ 0 is completely monotonic on I;
(ii) f1(t)f2(t) is completely monotonic on I.
Lemma 5.2. [23, Theorem 2] Let f1 be completely monotonic and let f2 be a

nonnegative function such that f ′
2 is completely monotonic. Then f1 ◦f2 is completely

monotonic.
Using these lemmas, we can prove the following useful result.

Theorem 5.3. If f is completely monotonic on (0,∞), then g(t) := f(
√
t)√
t

is

completely monotonic on (0,∞).
Proof. Let h(t) = t−1; then by Lemma 5.1 (ii) we know that g(t) is completely

monotonic on I = (0,∞) if both f(
√
t) and h(

√
t) are completely monotonic on I.

The function
√
t is positive on the interval (0,∞); moreover, it is such that its first

derivative 1
2 t

−1/2 is completely monotonic on I. Therefore, from Lemma 5.2 it follows

that if f is c.m. , then f(
√
t) is. Similarly, since h(t) = t−1 is completely monotonic,

h(
√
t) is completely monotonic. This concludes the proof.
In the following, we propose three different approaches to approximate the bilinear

forms of interest. The first approach exploits the results of Theorem 3.4 to describe
zT f⋄(A)w as a bilinear form that involves standard matrix functions of a tridiagonal
matrix. The second approach works directly with the generalized matrix function and
the Moore–Penrose pseudo-inverse of a bidiagonal matrix. The third approach first
approximates the action of a generalized matrix function on a vector and then derives
the approximation for the bilinear form of interest.

5.2. First approach. When the function f : R −→ R that defines f⋄ is c.m.,
then Gauss-type quadrature rules can be used to derive upper and lower bounds for
the quantities of interest. It is straightforward to see by using (3.2a) that a bilinear
form involving a generalized matrix function can be written as

zT f⋄(A)w = zT

(
r∑

i=1

f(σi)

σi
uiu

T
i

)
w̃ = z̃T

(
r∑

i=1

f(σi)

σi
viv

T
i

)
w,

where w̃ = Aw, and z̃ = AT z. Using the equalities in (3.2b) one can see that these
quantities can also be expressed as bilinear forms involving functions of the matrices
AAT and ATA, respectively. More in detail, one obtains

(5.2a) zT f⋄(A)w = z̃T

(
r∑

i=1

f(σi)

σi
viv

T
i

)
w = z̃T g(ATA)w,
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(5.2b) zT f⋄(A)w = zT

(
r∑

i=1

f(σi)

σi
uiu

T
i

)
w̃ = zT g(AAT )w̃,

where in both cases g(t) = (
√
t)−1f(

√
t).

In the following we focus on the case described by (5.2a). The discussion for the
case described by (5.2b) follows the same lines.

Remark 4. Note that if z,w are vectors such that z̃ 6= w, then we can use the
polarization identity [12]:

z̃T g(ATA)w =
1

4

[
(z̃ +w)T g(ATA)(z̃ +w)− (z̃−w)T g(ATA)(z̃ −w)

]

to reduce the evaluation of the bilinear form of interest to the evaluation of two
symmetric bilinear forms. For this reason, the theoretical description of the procedure
to follow will be carried out only for the case z̃ = w.

Let z̃ = w be a unit vector (i.e., ‖w‖2 = 1). We can rewrite the quantity (5.2a)
as a Riemann–Stieltjes integral by substituting the spectral factorization of ATA:

(5.3) wT g(ATA)w = wTVrg(Σ
2
r)V

T
r w =

r∑

i=1

f(σi)

σi
(vT

i w)2 =

∫ σ2
1

σ2
r

g(t) dα(t),

where α(t) is a piecewise constant step function with jumps at the positive eigenvalues
{σ2

i }ri=1 of ATA defined as follows:

α(t) =





0, if t < σ2
r∑r

i=j+1(v
T
i w)2, if σ2

j+1 ≤ t < σ2
j∑r

i=1(v
T
i w)2, if t ≥ σ2

r .

We use partial Golub–Kahan bidiagonalization [11, 13] of the matrix A to find
upper and lower bounds for the bilinear form described in (5.3). After ℓ steps, the
Golub–Kahan bidiagonalization of the matrix A with initial vector w yields the de-
compositions

(5.4) AQℓ = PℓBℓ, ATPℓ = QℓB
T
ℓ + γℓqℓe

T
ℓ ,

where the matrices Qℓ = [q0,q1, . . . ,qℓ−1] ∈ R
n×ℓ and Pℓ = [p0,p1, . . . ,pℓ−1] ∈

Rm×ℓ have orthonormal columns, the matrix

Bℓ =




ω1 γ1
. . .

. . .

ωℓ−1 γℓ−1

ωℓ


 ∈ R

ℓ×ℓ

is upper bidiagonal, and the first column of Qℓ is w.
Remark 5. All the {γj}ℓ−1

j=1 and {ωj}ℓj=1 can be assumed to be nonzero [11].
With this assumption, the CSVD of the bidiagonal matrix Bℓ coincides with its SVD:

Bℓ = UℓΘℓVT
ℓ ,

where Uℓ = [υ1,υ2, . . . ,υℓ] ∈ Rℓ×ℓ and Vℓ = [ν1,ν2, . . . ,νℓ] ∈ Rℓ×ℓ are orthogonal,
and Θℓ = diag(θ1, θ2, . . . , θℓ) ∈ Rℓ×ℓ.
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Combining the equations in (5.4) leads to

ATAQℓ = QℓB
T
ℓ Bℓ + γℓωℓqℓe

T
ℓ ,

where qℓ denotes the Lanczos vector computed at iteration ℓ+ 1 . The matrix

Tℓ = BT
ℓ Bℓ

is thus symmetric and tridiagonal and coincides (in exact arithmetic) with the matrix
obtained when the Lanczos algorithm is applied to ATA.

The quadratic form in (5.3) can then be approximated by using an ℓ-point Gauss
quadrature rule [12]:

(5.5) Gℓ := eT1 g(Tℓ)e1 = eT1 (
√
Tℓ)

†f(
√
Tℓ)e1.

If the function f(t) is c.m., then the Gauss rule provides a lower bound for (5.3),
which can be shown to be strictly increasing with ℓ. If the recursion formulas for
the Golub–Kahan bidiagonalization break down, that is, if γℓ = 0 at step ℓ, then the
Gauss quadrature rule gives the exact value (see [13]).

The following result can be easily derived from equation (5.5).
Proposition 5.4. Let A ∈ Rm×n and let Bℓ ∈ Rℓ×ℓ be the bidiagonal matrix

computed after ℓ steps of the Golub–Kahan bidiagonalization algorithm. Let (θi,υi,νi)
for i = 1, 2, . . . , ℓ be the singular triplets of Bℓ = UℓΘℓVT

ℓ . Then the nodes of the ℓ-
point Gauss quadrature rule Gℓ are the singular values {θi}ℓi=1. Furthermore, if z = w̃,
the weights of Gℓ are (eT1 υi)

2θ−1
i for i = 1, 2, . . . , ℓ.

Similarly, if z̃ = w, then the weights of the rule are given by (eT1 νi)
2θ−1

i .
To provide an upper bound for (5.3) when f is c. m., one can use a (ℓ+ 1)-point

Gauss–Radau quadrature rule with a fixed node τ = σ2
1 ; this can be expressed in

terms of the entries of the symmetric tridiagonal matrix

T̂ℓ+1 =

(
Tℓ ρℓeℓ

ρℓe
T
ℓ ω̂ℓ+1

)
∈ R

(ℓ+1)×(ℓ+1)

as Ĝℓ+1 := eT1 g(T̂ℓ+1)e1, where g(t) = (
√
t)−1f(

√
t). The entries of this matrix, except

for the last diagonal entry, are those of BT
ℓ+1Bℓ+1. To compute the last diagonal entry

so that T̂ℓ+1 has τ = σ2
1 among its eigenvalues, we proceeds as follows [12]. First, we

compute ρℓ; then we set ω̂ℓ+1 = τ + eTℓ x, where x is the solution of the tridiagonal
linear system (Tℓ−τI)x = ρ2ℓeℓ. The arithmetic mean between the ℓ-point Gauss rule

Gℓ and the (ℓ+ 1)-point Gauss–Radau rule Ĝℓ+1 is then used as an approximation of
the quadratic form wT g(ATA)w.

5.3. Second approach. In this section we provide a second approach to the
approximation of bilinear forms expressed in terms of generalized matrix functions.

The following result shows how to compute the ℓ-point Gauss quadrature rule in
terms of the generalized matrix function of the bidiagonal matrix Bℓ. Two expressions
are derived, depending on the starting (unit) vector given as input to the Golub–
Kahan algorithm. Recall that, unless z = Aw or w = AT z, one has to use the
polarization identity to estimate the bilinear forms of interest.

Proposition 5.5. Let be A ∈ Rm×n and let Bℓ ∈ Rℓ×ℓ be the bidiagonal matrix
computed at step ℓ of the Golub–Kahan bidiagonalization algorithm. Then, the ℓ-point
Gauss quadrature rule Gℓ is given by

Gℓ = eT1 B
†
ℓf

⋄(Bℓ)e1, if z̃ = w,
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or

Gℓ = eT1 f
⋄(Bℓ)B

†
ℓe1, if z = w̃.

Proof. Let Bℓ = UℓΘℓVT
ℓ be a singular value decomposition of the matrix Bℓ

obtained after ℓ steps of the Golub–Kahan bidiagonalization algorithm with starting
vector z̃ = w. Then, from Proposition 5.4, it follows that

Gℓ =

ℓ∑

i=1

f(θi)
(eT1 νi)

2

θi
= eT1

(
ℓ∑

i=1

f(θi)

θi
νiν

T
i

)
e1

= eT1 VℓΘ
†
ℓf(Θℓ)VT

ℓ e1 = eT1 B
†
ℓUℓf(Θℓ)VT

ℓ e1

= eT1 B
†
ℓf

⋄(Bℓ)e1.

The proof of the case when z = w̃ goes along the same lines and it is thus omitted.
The (ℓ+1)-point Gauss-Radau quadrature rule Ĝℓ+1 with a fixed node σ1 can be

expressed in terms of the entries of the bidiagonal matrix

B̂ℓ+1 =

(
Bℓ γℓeℓ
0T ω̂ℓ+1

)
∈ R

(ℓ+1)×(ℓ+1)

as Ĝℓ+1 = eT1 B̂
†
ℓ+1f

⋄(B̂ℓ+1)e1 if z̃ = w or as Ĝℓ+1 = eT1 f
⋄(B̂ℓ+1)B̂

†
ℓ+1e1 when z = w̃.

The entries of B̂ℓ+1, except for the last diagonal entry, are those of Bℓ+1. To

compute the last diagonal entry, one has to ensure that σ2
1 is an eigenvalue of T̂ℓ+1 =

B̂T
ℓ+1B̂ℓ+1. It can be easily shown that

ω̂ℓ+1 =
√
σ2
1 + eTℓ x− γ2

ℓ ,

where x is the solution of the tridiagonal linear system (BT
ℓ Bℓ − σ2

1I)x = (ωℓγℓ)
2eℓ.

5.4. Third approach. Assume that we have used ℓ = r = rank(A) steps of the
Golub–Kahan bidiagonalization algorithm with starting vector w (normalized so as
to have unit norm) to derive the matrices Pr, Br, and Qr such that A = PrBrQ

T
r .

The CSVD of the bidiagonal matrix is Br = UrΣrVT
r , where Σr is the same diagonal

matrix appearing in the CSVD of A. Since Pr and Qr have full column rank, we know
that rank(PrBrQ

T
r ) = rank(Br) = r, and thus we can write

zT f⋄(A)w = zT f⋄(PrBrQ
T
r )w = zT f⋄(PrUrΣrVT

r QT
r )w

= zT (PrUr)f(Σr)(QrVr)
Tw = ẑT f⋄(Br)e1,

where ẑ = PT
r z and QT

r w = e1.
Assume now that ℓ < r. We can then truncate the bidiagonalization process and

approximate f⋄(A)w as

f⋄(A)w ≈ Pℓf
⋄(Bℓ)e1

and then obtain the approximation to the bilinear form of interest as

zT f⋄(A)w ≈ zTPℓf
⋄(Bℓ)e1.

The quality of the approximation will depend in general on the distribution of the
singular values of A and on the particular choice of f . Generally speaking, if f(σi) is
much larger on the first few singular values of A than for the remaining ones, then a
small number of steps result in approximations with small relative errors.
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6. The block case. In this section we describe two ways to compute approxi-
mations of quantities of the form (5.1), when k > 1. It is known that for this kind of
problem, block algorithms are generally more efficient than the separate computation
of each individual entry (or column) of ZTf⋄(A)W .

When dealing with blocks Z andW with a number of columns k > 1, the complete
monotonicity of the function f does not ensure that block Gauss-type quadrature
rules provide bounds on the quantities of the form ZT f⋄(A)W . In this case, indeed,
no information about the sign of the quadrature error can be obtained from the
remainder formula for the Gauss quadrature rules [12]. Therefore, we focus on the
computation of approximations for the quantities of interest, rather than on bounds.
We propose two different approaches to compute the quantities (5.1). The first one
exploits the connection between generalized matrix functions and standard matrix
functions described in Theorem 3.4, while the second one first approximates the action
of a generalized matrix function on k vectors and then derives the approximation of
the quantities of interest.

6.1. First approach. As a first approach, we propose the use of a pair of block
Gauss and anti-Gauss quadrature rules [19, 5, 10] based on the nonsymmetric block
Lanczos algorithm [12]. As already pointed out, if we let g(t) = (

√
t)−1f(

√
t), it holds

that

ZT f⋄(A)W = Z̃T g(ATA)W = ZT g(AAT )W̃ ,

where Z̃ = ATZ and W̃ = AW . In this case, there is no equivalent to the polarization
identity and thus we work directly with the blocks Z̃ and W , Z̃ 6= W (the case when

Z and W̃ are the initial blocks is similar).

Let Z̃0∆
T
0 ∈ Rn×k and W0Γ

T
0 ∈ Rm×k have all zero entries. Assume moreover

that Z̃1 = Z̃ and W1 = W satisfy Z̃T
1 W1 = Ik. Then the nonsymmetric block Lanczos

algorithm applied to the matrix X = ATA is described by the following recursions:

(6.1)

Ωj = WT
j

(
XZ̃j − Z̃j−1∆

T
j−1

)
,

Rj = XZ̃j − Z̃jΩj − Z̃j−1∆
T
j−1, QRRR = Rj ,

Sj = XTWj −WjΩ
T
j −Wj−1Γ

T
j−1, QSRS = Sj ,

QT
SQR = Ũ Σ̃Ṽ T ,

Z̃j+1 = QRṼ Σ̃−1/2, Wj+1 = QSŨ Σ̃−1/2,

Γj = Σ̃1/2Ṽ TRR, ∆j = Σ̃1/2W̃TRS ,

j = 1, . . . , ℓ. In (6.1), QRRR = Rj and QSRS = Sj are the QR factorizations of

Rj and Sj , respectively, and Ũ Σ̃Ṽ T is a singular value decomposition of the matrix

QT
SQR. The recursion formulas (6.1) ensures that Z̃T

j Wj = δijIk.

More succinctly, after ℓ steps, the nonsymmetric block Lanczos algorithm applied
to the matrix X = ATA with initial blocks Z̃1 and W1 yields the decompositions

X
[
Z̃1, . . . , Z̃ℓ

]
=
[
Z̃1, . . . , Z̃ℓ

]
Jℓ + Z̃ℓ+1ΓℓE

T
ℓ ,

X [W1, . . . ,Wℓ] = [W1, . . . ,Wℓ] J
T
ℓ +Wℓ+1∆ℓE

T
ℓ ,
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where Jℓ is the matrix

(6.2) Jℓ =




Ω1 ∆T
1

Γ1 Ω2 ∆T
2

. . .
. . .

. . .

Γℓ−2 Ωℓ−1 ∆T
ℓ−1

Γℓ−1 Ωℓ




∈ R
kℓ×kℓ,

and Ei, for i = 1, 2, . . . , ℓ are k× (kℓ) block matrices which contain k× k zero blocks
everywhere, except for the ith block, which coincides with the identity matrix Ik. We
remark that if Z̃ = W , the use of the symmetric block Lanczos algorithm is preferable.
In this case, the matrix Jℓ (6.2) is symmetric and the decompositions (6.1) can be
written as

X [W1, . . . ,Wℓ] = [W1, . . . ,Wℓ] Jℓ +Wℓ+1ΓℓE
T
ℓ .

The ℓ-block nonsymmetric Gauss quadrature rule Gℓ can then be expressed as

Gℓ = ET
1 g(Jℓ)E1.

The (ℓ+1)-block anti-Gauss quadrature rule Hℓ+1 is defined as the (ℓ+1)-block
quadrature rule such that

(I −Hℓ+1) p = − (I − Gℓ) p, p ∈ P
2ℓ+1,

where Ip :=
∑r

i=1 p(σ
2
i )αiβ

T
i +

∑n
i=r+1 p(0)αiβ

T
i = (Z̃TV )p(ΣTΣ)(WTV )T , with

Z̃TV = [α1,α2, . . . ,αn], W
TV = [β1,β2, . . . ,βn] ∈ Rk×n, and P2ℓ+1 is the set of

polynomials of degree at most 2ℓ + 1 (see [12]). As shown in [10], the (ℓ + 1)-block

nonsymmetric anti-Gauss rule can be computed in terms of the matrix J̃ℓ+1 as

Hℓ+1 = ET
1 g(J̃ℓ+1)E1,

where

J̃ℓ+1 =




Ω1 ∆T
1

Γ1 Ω2 ∆T
2

. . .
. . .

. . .

Γℓ−1 Ωℓ

√
2∆T

ℓ√
2Γℓ Ωℓ+1




∈ R
k(ℓ+1)×k(ℓ+1).

A pair of block Gauss and anti-Gauss quadrature rules is not guaranteed to pro-
vide upper and lower bounds, not even in the case k = 1. However, suppose that the
function g can be written as

g(t) =

ℓ∑

i=1

ηipi(t),

where pi(t) are the orthonormal polynomials implicitly defined by the scalar Lanczos
algorithm. In [5], the authors show that if the coefficients ηi decay rapidly to zero,
then

(I −Hℓ+1) g ≈ − (I − Gℓ) g,
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that is, a pair of scalar Gauss and anti-Gauss rules provides estimates of upper and
lower bounds on the bilinear form of interest. This result has been extended to the
block case in [10]. In this framework, if we express g(t) in terms of orthonormal
polynomials, the coefficients in the expansion are k × k matrices. To obtain good
entrywise approximations for the quantities of interest it is necessary that the norm
of the coefficients decays rapidly as ℓ increases. This condition is satisfied if g(t) is
analytic in a simply connected domain D enclosing the spectrum of ATA, as long as
the boundary ∂D is not close to the spectrum [10].

If the function g(t) satisfies the above conditions, the arithmetic mean

(6.3) Fℓ =
1

2
(Gℓ +Hℓ+1)

between Gauss and anti-Gauss quadrature rules can be used as an approximation of
the matrix-valued expression ZT f⋄(A)W .

6.2. Second approach. The second approach extends to the block case the
approach described in subsection 5.4. Assume that the initial block W ∈ Rn×k

satisfies WTW = Ik and that the matrices Γ0 ∈ R
k×k and P0 ∈ R

m×k are zero
matrices. The following recursions determine the first ℓ steps of the block Golub–
Kahan algorithm with starting block Q1 = W :

(6.4)

Rj = AQj − Pj−1Γ
T
j−1,

PjΩj = Rj ,

Sj = ATPj −QjΩ
T
j ,

Qj+1Γj = Sj ,

j = 1, . . . , ℓ,

where PjΩj = Rj and Qj+1Γj = Sj are QR factorizations of Rj and Sj , respectively.
After ℓ steps, the recursions (6.4) yield the decompositions

A [Q1, . . . , Qℓ] = [P1, . . . , Pℓ]Bℓ,

AT [P1, . . . , Pℓ] = [Q1, . . . , Qℓ]B
T
ℓ +Qℓ+1ΓℓE

T
ℓ ,

where now

Bℓ =




Ω1 ΓT
1

Ω2 ΓT
2

. . .
. . .

Ωℓ−1 ΓT
ℓ−1

Ωℓ




∈ R
kℓ×kℓ.

Following the same reasoning as in subsection 5.4, when kℓ < r = rank (A), we can
approximate the quantities of interest as

ZT f⋄(A)W ≈ ZT [P1, . . . , Pℓ]f
⋄(Bℓ)E1 = Fℓ.

7. Numerical results. In this section we present some numerical results con-
cerning the application of the previously introduced techniques to the computation of
centrality and communicability indices in directed networks. The first set of experi-
ments concerns the computation of the total hub communicability of nodes, which, for
a node i, is defined as the following bilinear form:

(7.1) Ch(i) := [sinh⋄(A)1]i = eTi sinh⋄(A)1 ,
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where A is the adjacency matrix of the digraph. As shown in [1], this quantity can be
used to rank how important node i is when regarded as a “hub”, i.e., as a broadcaster
of information (analogous quantities rank the nodes in order of their importance as
“authorities”, i.e., receivers of information). The second set of experiments concerns
the computation of the resolvent-based communicability [4] between node i, playing
the role of broadcaster of information, and node j, acting as a receiver. The quantities
of interest here have the form [h⋄(A)]ij , where h(t) = αt(1−(αt)2)−1 and α ∈ (0, σ−1

1 ).
In all the tests we apply the approaches previously described and we use as stopping
criterion

(7.2) Rℓ =

∣∣∣∣
x(ℓ+1) − x(ℓ)

x(ℓ)

∣∣∣∣ ≤ tol,

where tol is a fixed tolerance and x(ℓ) represents the approximation to the bilinear
form of interest computed at step ℓ by the method under study.

Our dataset contains the adjacency matrices associated with three real world
unweighted and directed networks: Roget, SLASHDOT, and ITwiki [3, 7, 24]. The
adjacency matrix associated with Roget is 994 × 994 and has 7281 nonzeros. The
graph contains information concerning the cross-references in Roget’s Thesaurus. The
adjacency matrix associated with SLASHDOT is an 82168×82168 matrix with 948464
nonzeros. For this network, there is a connection from node i to node j if user i
indicated user j as a friend or a foe. The last network used in the tests, ITwiki,
represents the Italian Wikipedia. Its adjacency matrix is 49728 × 49728 and has
941425 nonzeros, and there is a link from node i to node j in the graph if page i refers
to page j.

Node centralities. In this section we want to investigate how the three ap-
proaches defined for the case of k = 1 perform when we want to approximate (7.1),
the total communicability of nodes in the network. For each network in the dataset,
we computed the centralities of ten nodes chosen uniformly at random among all the
nodes in the graph.

The results for the tests are presented in Tables 1-3. The tolerance used in
the stopping criterion (7.2) is set to tol = 10−6. The tables display the number of
iterations required to satisfy the above criterion and the relative error of the computed
solution with respect to the “exact” value of the bilinear form. The latter has been
computed using the full SVD for the smallest network, and using a partial SVD with
a sufficiently large number of terms (≫ ℓ) for the two larger ones. The relative error
is denoted by

Eℓ =
|x(ℓ) − zTh⋄(A)w|

|zTh⋄(A)w| .

Concerning the first approach, since g(t) = (
√
t)−1 sinh(

√
t) is not completely

monotonic, we have used the Gauss quadrature rule as an approximation for the
quantities of interest, rather than as a lower bound.

As one can see from the tables, only a small number of steps is required for all
the three approaches. The third approach appears to be the best one for computing
these quantities since it requires almost always the same number of steps for all the
nodes in each network in the dataset, while attaining higher accuracy. Somewhat
inferior results (in terms of both the number of iterations performed and the accuracy
of the computed solution) are obtained with the other two approaches, which however
return
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Table 1

Network: Roget, h(t) = sinh(t) (tol = 10−6).

First approach Second approach Third approach
ITER Eℓ ITER Eℓ ITER Eℓ

1 8 1.10e-06 8 1.10e-06 9 9.45e-09
2 34 9.93e-08 34 9.74e-08 10 2.78e-09
3 5 3.20e-05 5 3.20e-05 8 5.26e-07
4 6 4.38e-06 6 4.38e-06 9 1.21e-08
5 20 6.18e-06 20 6.18e-06 9 1.21e-08
6 7 2.62e-06 7 2.62e-06 10 3.68e-10
7 8 7.08e-06 8 7.08e-06 9 1.99e-08
8 15 9.07e-07 15 9.07e-07 9 2.80e-08
9 9 8.15e-08 9 8.15e-08 9 1.72e-09
10 7 3.78e-07 7 3.78e-07 9 2.64e-08

Table 2

Network: SLASHDOT, h(t) = sinh(t) (tol = 10−6).

First approach Second approach Third approach
ITER Eℓ ITER Eℓ ITER Eℓ

1 6 4.31e-07 6 5.61e-07 9 2.45e-08
2 9 3.24e-05 15 2.26e-06 9 1.56e-08
3 7 1.24e-06 8 1.75e-06 9 1.04e-07
4 14 2.21e-04 8 2.12e-04 10 1.74e-08
5 7 2.24e-05 7 2.35e-05 10 5.16e-09
6 10 4.84e-04 19 3.72e-04 10 1.99e-08
7 7 1.20e-06 7 1.20e-06 9 6.47e-08
8 7 7.11e-07 7 7.66e-07 9 7.68e-09
9 7 5.53e-06 7 5.98e-06 9 1.32e-09
10 6 6.98e-07 6 4.92e-07 8 8.68e-09

Table 3

Network: ITwiki, h(t) = sinh(t) (tol = 10−6).

First approach Second approach Third approach
ITER Eℓ ITER Eℓ ITER Eℓ

1 5 3.88e-08 5 2.90e-08 6 8.02e-09
2 10 4.72e-05 9 4.68e-05 7 1.27e-08
3 5 3.20e-08 5 3.17e-08 6 7.01e-09
4 7 2.31e-05 9 2.33e-05 8 4.31e-09
5 8 4.20e-05 20 5.77e-05 8 5.91e-09
6 9 2.19e-04 24 2.13e-04 8 2.70e-08
7 6 4.26e-07 6 5.85e-07 7 3.15e-09
8 14 1.91e-04 29 2.24e-04 8 3.38e-09
9 5 8.57e-08 5 9.31e-08 6 5.07e-09
10 9 9.36e-06 8 1.12e-05 8 3.22e-10

very good results as well. This can be explained by observing that the function sinh(t)
being applied to the larger (approximate) singular values of A takes much larger values
than the function t−1 sinh(t) used by the other two approaches, therefore a small
relative error can be attained in fewer steps (since the largest singular values are the
first to converge).

Resolvent-based communicability between nodes. Our second set of nu-
merical experiments concerns the computation of the resolvent-based communicabil-
ity between two nodes i and j. The concerned function is now h(t) = αt

1−(αt)2 , where

α ∈ (0, σ−1
1 ) is a user-defined parameter. The generalized matrix function h⋄(A) arises
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Table 4

Network: Roget, h(t) = αt

1−(αt)2
, α = 1

8σ1
(tol = 10−4).

First approach Second approach Third approach
ITER Eℓ ITER Eℓ ITER Eℓ

1 75 2.14e+03 75 2.14e+03 5 6.61e-08
2 106 1.60e-02 106 1.60e-02 4 3.75e-08
3 906 2.99e-01 906 2.99e-01 5 1.65e-08
4 992 2.17e-08 992 7.82e-06 5 1.33e-07
5 166 7.16e+02 166 7.16e+02 5 7.52e-08
6 257 1.03e-01 257 1.03e-01 4 4.46e-08
7 874 5.41e-01 874 5.41e-01 5 2.46e-08
8 274 1.06e+00 274 1.06e+00 5 9.46e-08
9 259 8.37e-04 259 8.37e-04 5 7.31e-11
10 733 2.48e+01 733 2.48e+01 5 3.37e-07

as the top right square block of the matrix resolvent (I − αA )−1, where the matrix
A is defined as in (2.1). This resolvent function is similar to one first used by Katz
to assign centrality indices to nodes in a network, see [18]. In [4] the authors showed
that when A is as in (2.1), the resolvent can be written as

(I − αA )−1 =

(
(I − α2AAT )−1 h⋄(A)

h⋄(AT ) (I − α2ATA)−1

)
, α ∈ (0, σ−1

1 ).

Furthermore, the entries of its top right block can be used to account for the communi-
cability between node i (playing the role of spreader of information, or hub) and node j
(playing the role of receiver, or authority). As before, the function g(t) = (

√
t)−1h(

√
t)

is not completely monotonic. Thus the Gauss rule can only be expected to provide
an approximation to the quantity of interest.

We have performed three different tests on the network Roget for three different
values of α. More in detail, we have tested α = 1

8σ1
, 1
2σ1

, and 17
20σ1

= 0.85
σ1

. Figure 1

shows the values of the diagonal entries of h(Σr) and Σ†
rh(Σr) for the three different

values of α used in the tests. Figure 2 plots the respective behavior of the diagonal
entries of Σ†

rh(Σr) and h(Σr) for the three values of the parameter α. From these
plots, one can expect the first and second approach to require a higher number of
steps than that required by the third one; this is because the leading singular values
are mapped to appreciably larger values when applying the function h(t) than when
applying the function t−1h(t). The results for this set of experiments are contained in
Tables 4–6, when the tolerance for the stopping criterion (7.2) is set to tol = 10−4. The
pairs of nodes whose communicability we want to approximate are chosen uniformly
at random among all the possible pairs of distinct nodes in the graph. We kept the
same set of pairs in all the three experiments. We want to point out, however, that
the value being computed for each pair varies with α, and thus the results (in terms
of number of iterations and accuracy) cannot be compared among the three tables.

As can be clearly seen from the tables, the fastest and most accurate method (in
terms of relative error with respect to the exact value) is once again the third. Indeed,
it requires fewer steps than the first two approaches and it achieves a higher level of
accuracy (see, e.g., Table 5). In fact, in some cases the first two approaches stabilize
at a value which is far from the quantity that needs to be computed; this kind of
stagnation leads to the termination criterion to be satisfied even if convergence has
not been attained. Moreover, in Table 4, case 4 requires ℓ = rank(A) = 992 steps to
satisfy (7.2) for the first two approaches, whereas the third only requires 5 steps.
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Table 5

Network: Roget, h(t) = αt

1−(αt)2
, α = 1

2σ1
(tol = 10−4).

First approach Second approach Third approach
ITER Eℓ ITER Eℓ ITER Eℓ

1 75 6.32e+00 75 6.32e+00 7 1.90e-06
2 87 8.90e-03 87 8.90e-03 6 6.02e-07
3 308 1.10e-02 308 1.10e-02 6 7.96e-06
4 106 5.71e-01 106 5.72e-01 7 7.77e-08
5 495 1.72e-01 495 1.72e-01 7 4.43e-06
6 79 4.51e-02 79 4.51e-02 6 2.12e-06
7 118 8.64e-02 118 8.64e-02 7 4.24e-07
8 121 1.00e-01 121 1.01e-01 7 5.84e-07
9 59 1.91e-02 59 1.91e-02 6 6.99e-07
10 574 1.87e-01 574 1.87e-01 7 1.49e-06
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Table 6

Network: Roget, h(t) = αt

1−(αt)2
, α = 0.85 σ−1

1 (tol = 10−4).

First approach Second approach Third approach
ITER Eℓ ITER Eℓ ITER Eℓ

1 74 2.72e-01 74 2.72e-01 10 4.88e-06
2 66 3.45e-03 66 3.45e-03 8 5.22e-06
3 97 6.96e-02 97 6.96e-02 8 4.79e-06
4 58 3.72e-02 58 3.72e-02 8 8.04e-05
5 147 6.23e-02 147 6.23e-02 9 1.23e-05
6 53 8.48e-03 53 8.48e-03 9 3.34e-06
7 74 1.58e-02 74 1.58e-02 7 3.20e-04
8 117 6.49e-03 117 6.49e-03 10 4.52e-06
9 23 6.02e-03 23 6.02e-03 9 4.34e-07
10 152 1.70e-01 152 1.70e-01 9 3.90e-05

Comparison with standard Lanczos-based approach. In the case of gen-
eralized matrix functions like sinh⋄(A), which occur as submatrices of “standard”
matrix functions applied to the symmetric matrix A , it is natural to compare the
previously proposed approaches with the use of Gauss quadrature-based bounds and
estimates based on the Lanczos process. This was the approach used, for example,
in [4]. Henceforth, we refer to this approach as “the mmq approach,” since it is imple-
mented on the basis of the mmq toolkit [22] originally developed by Gérard Meurant;
see also [12].

Numerical experiments, not shown here, indicate that on average, the mmq ap-
proach requires a slightly higher number of iterations than our third approach to de-
liver comparable accuracy in computing the communicability between pairs of nodes.
Note that the cost per step is comparable for the two methods. An advantage of
the mmq approach is that it can provide lower and upper bounds on the quantities
being computed, but only if bounds on the singular values of A are available. A
disadvantage is that it requires working with vectors of length 2n instead of n.

Of course, the Lanczos-based approach is not applicable to generalized matrix
functions that do not arise as submatrices of standard matrix functions.

Block approaches. In the following, we test the performance of the two block
approaches described in section 6 when trying to approximate the communicabilities
among k nodes of the Twitter network, which has 3656 nodes and 188712 edges [25].
All the computations were carried out with MATLAB Version 7.10.0.499 (R2010a)
64-bit for Linux, in double precision arithmetic, on an Intel Core i5 computer with 4
GB RAM.

In order to compute approximations to the communicabilities, we set

Z = W = [ei1 , ei2 , . . . , eik ],

where i1, i2, . . . , ik are chosen uniformly at random among the n nodes of the network.
To better analyze the behavior of the methods, we run both algorithms ten times and
report in each table the averaged values obtained by changing the set of k nodes
after each run. As in the previous subsection, we test the performance of the two
generalized matrix functions induced by h(t) = sinh(t) and h(t) = αt(1 − (αt)2)−1,
respectively.

The first approach is based on the computation of block Gauss and anti-Gauss
quadrature rules. Since Z̃ 6= W , we need to use the nonsymmetric Lanczos algorithm
and, in order to avoid breakdown during the computation, it is convenient to add a
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Table 7

Execution time (in seconds), relative error and relative distance for the computation of the total
communicabilities between k nodes of the Twitter network with ℓ = 5 and ℓ = 10 steps.

k
ℓ = 5 ℓ = 10

Time E5 R5 Time E10 R10

5 2.14e-01 4.62e-04 5.07e-09 3.50e-01 4.62e-04 9.74e-10
10 2.70e-01 1.04e-02 2.21e-09 5.62e-01 1.04e-02 9.96e-10
20 4.21e-01 3.78e-02 5.39e-10 1.10e+00 3.78e-02 8.12e-09
30 6.63e-01 2.24e-02 1.78e-11 2.12e+00 2.24e-02 3.14e-10
50 1.24e+00 4.59e-02 6.83e-12 5.57e+00 4.59e-02 1.63e-11
100 3.86e+00 5.65e-02 3.43e-11 2.72e+01 5.65e-02 1.60e-11

dense vector to each initial block (see [2] for more details). Each table reports the
relative error and the relative distance between the two quadrature rules computed
as:

Eℓ =
‖Fℓ − ZTh⋄(A)W‖2

‖ZTh⋄(A)W‖2
and Rℓ =

‖Gℓ −Hℓ+1‖max

‖Gℓ +Hℓ+1‖max
,

respectively, where

‖M‖max = max
1≤i≤m
1≤j≤n

{Mij}, with M ∈ C
m×n,

and Fℓ is given by (6.3).
In order to obtain good entrywise approximations of ZTh⋄(A)W , the domain D

of analyticity of g(t) = (
√
t)−1h(

√
t) has to enclose the smallest interval containing

the spectrum of ATA, and the boundary ∂D has to be well separated from the ex-
tremes of the interval. However, when h(t) = sinh(t), the function g(t) applied to
our test problems does not exhibit this nice property; indeed, in all three cases A is
(numerically) singular and therefore the singularity t = 0 belongs to the smallest in-
terval containing the spectrum ATA. As pointed out in section 6, we cannot therefore
expect Fℓ = (Gℓ +Hℓ+1) /2 to provide a good approximation for ZTh⋄(A)W , since
the condition (I −Hℓ+1) g ≈ − (I − Gℓ) g is not guaranteed.

The results in Table 7 confirm this observation, since they clearly show that the
relative error Eℓ is not comparable with the relative distance Rℓ. As expected, a
small value of Rℓ does not ensure a satisfactory value of Eℓ. Therefore, the relative
distance between the approximations provided by the Gauss and anti-Gauss rules
cannot be used as a stopping criterion. Moreover, the results in Table 7 also show
that performing more iterations does not improve the results; indeed, for all the values
of the block size k it holds E5 ≈ E10. It is also worth noting that the relative distance
does not decrease as ℓ increases, but stabilizes far from the desired value and in one
case it even increases. In view of this, the behavior of the algorithm is not satisfactory
regardless of the nodes taken into account or the block size k.

Tables 8–10 report the performance of the method when trying to approximate
the communicabilities with respect to the function h(t) = αt(1 − (αt)2)−1, using
different values of α ∈ (0, σ−1

1 ). In this case, the function g(t) = α(1 − α2t)−1 is
analytic, provided that α < σ−1

1 , as in our case.
Note that as α approaches σ−1

1 , the relative error Eℓ increases (cf. Tables 8–
10). This happens because the distance between the boundary ∂D of the domain
D of analyticity of g(t) and the smallest interval containing the spectrum of ATA is
decreasing (see section 6.1). In the first table, the values of E2 and R2 are comparable
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Table 8

Number of block Lanczos steps, execution time (in seconds), relative error and relative distance
for the computation of the Katz communicabilities between k nodes of the Twitter network. Here,
α = 1/(8σ1).

k Time E2 R2

5 5.20e-02 4.77e-04 1.99e-04
10 8.89e-02 7.90e-05 2.85e-04
20 1.69e-01 4.06e-04 2.59e-04
30 2.71e-01 5.85e-04 1.50e-04
50 1.31e+00 2.60e-04 1.53e-04
100 6.75e-01 5.40e-04 1.83e-04

and we reach the desired accuracy with only two iterations. We remark that some
other experiments, not shown here, pointed out that increasing the number of steps
of the algorithm does not improve the relative error.

Table 9

Number of block Lanczos steps, execution time (in seconds), relative error and relative distance
for the computation of the Katz communicabilities between k nodes of the Twitter network. Here,
α = 1/(2σ1).

k Time E3 R3

5 5.63e-02 6.20e-04 7.54e-05
10 9.47e-02 4.50e-04 2.66e-05
20 1.79e-01 3.36e-03 1.15e-05
30 2.61e-01 2.41e-03 6.56e-07
50 4.66e-01 8.36e-03 1.14e-06
100 1.35e+00 9.21e-03 1.04e-07

Table 10

Number of block Lanczos steps, execution time (in seconds), relative error and relative distance
for the computation of the communicabilities between k nodes of the Twitter network. Here, α =
0.85/σ1.

k Time E3 R3

5 8.07e-02 1.89e-03 5.04e-05
10 9.74e-02 4.26e-03 2.76e-04
20 1.83e-01 2.19e-02 3.25e-04
30 2.95e-01 1.45e-02 6.48e-05
50 5.27e-01 3.46e-02 7.41e-05
100 1.33e+00 1.90e-02 7.27e-06

Table 9 shows that we obtain good approximations setting α = 0.5σ−1
1 , but the

relative distance between the two quadrature rules decreases faster than the relative
error. A similar behavior is shown in Table 10, where α = 0.85σ−1

1 . The relative error
increases as α gets closer to σ−1

1 and does not improve performing more steps.
We turn now to the approximation of the quantity (5.1) using the second block

approach, namely the block Golub–Kahan decomposition algorithm. When using this
approach, we perform as many steps as necessary to obtain

Rℓ =
‖Fℓ − Fℓ−1‖2

‖Fℓ−1‖2
< tol,

with tol = 10−5. Table 11 displays the results obtained when we approximate the
communicabilities among k nodes with respect to the generalized matrix function
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Table 11

Execution time (in seconds), relative error, number of block GK steps and stopping criterion
for the computation of the communicabilities between k nodes of the Twitter network.

k ITER Time Eℓ Rℓ

5 6 2.51e+00 1.14e-08 1.98e-06
10 6 1.65e+00 5.79e-09 1.58e-06
20 5 1.77e+00 5.21e-09 1.20e-06
30 5 2.19e+00 5.05e-09 1.25e-06
50 5 3.34e+00 1.84e-09 7.04e-07
100 4 5.05e+00 6.65e-09 4.38e-06

Table 12

Execution time (in seconds), relative error, number of block Golub–Kahan steps and stopping
criterion for the computation of the communicabilities among k nodes of the Twitter network. In
this case, α = 1/(8σ1).

k ITER Time Eℓ Rℓ

5 3 7.62e-01 3.22e-10 2.14e-06
10 3 8.01e-01 3.93e-10 2.16e-06
20 3 9.27e-01 1.77e-10 2.24e-06
30 3 1.09e+00 9.64e-11 1.74e-06
50 3 1.49e+00 4.40e-11 6.70e-07
100 3 2.86e+00 1.16e-11 4.21e-07

induced by h(t) = sinh(t). Clearly, this approach requires a small number of steps to
reach a high level of accuracy.

Table 13

Execution time (in seconds), relative error, number of block GK steps and stopping criterion
for the computation of the communicabilities between k nodes of the Twitter network. In this case,
α = 1/(2σ1).

k ITER Time Eℓ Rℓ

5 4 9.35e-01 3.47e-08 2.05e-06
10 4 1.08e+00 8.85e-09 1.90e-06
20 4 1.38e+00 1.56e-09 1.20e-06
30 4 1.65e+00 3.70e-10 3.59e-07
50 4 2.32e+00 1.49e-10 2.56e-07
100 4 4.91e+00 2.20e-11 6.21e-08

Table 14

Execution time (in seconds), relative error, number of block GK steps and stopping criterion
for the computation of the communicabilities between k nodes of the Twitter network. In this case,
α = 0.85/σ1.

k ITER Time Eℓ Rℓ

5 5 1.29e+00 3.02e-08 2.08e-06
10 5 1.36e+00 1.01e-08 6.86e-07
20 5 1.66e+00 1.42e-08 2.38e-06
30 5 2.16e+00 3.49e-09 1.33e-06
50 4 2.58e+00 7.81e-09 4.33e-06
100 4 4.84e+00 1.73e-09 1.62e-06

Tables 12-14 show the results concerning the approximation of the communi-
cabilities among k nodes using the generalized matrix function induced by h(t) =
αt(1− (αt)2)−1. As above, we consider three different values for the parameter α. As
in the scalar case, the method requires fewer iterations to reach a higher accuracy as
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the value of α moves away from σ−1
1 .

The two approaches behave again very differently. As before, the results obtained
with the second approach are very promising also in view of the fact that we did not
make any assumptions on the regularity of the function.

8. Conclusions. In this paper we have proposed several algorithms for the com-
putation of certain quantities associated with generalized matrix functions. These
techniques are based on Gaussian quadrature rules and different variants of the Lanc-
zos and Golub–Kahan algorithms. In particular, we have investigated three distinct
approaches for estimating scalar quantities like zTf⋄(A)w, and two block methods
for computing matrix-valued expressions like ZTf⋄(A)W . The performance of the
various approaches has been tested in the context of computations arising in network
theory. While not all methods can be expected to always perform well in practice, we
have identified two approaches (one scalar-based, the other block-based) that produce
fast and accurate approximations for the type of problems considered in this paper.
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