8 research outputs found

    Identifying Bambusa Sp. at TNGGP Resort PTN Selabintana Sukabumi through Mini Research Activities using Project Based Learning

    Get PDF
    Bamboo is a clear-trunked plant with grass stem type (calamus), which is a stem that is not hard, has real segments, and often hollow. The nature of the surface of the stem is hairy (laevis). The direction of growth is perpendicular (erectus). Bamboo has no branching pattern because it is a monocot. It has books (nodes) and segments (internodes). The cross section of the stem is round (teres) hollow or empty as it is stated by (Yutam Soleh 2013). This study aims to identify Bambusa sp. at Resort PTN Selabintana Section PTN Region III Division PTN Region II Sukabumi Gunung Gede Pangrango National Park. The method used is a descriptive exploratory method that describes the identification of Bambusa sp., and a roaming method that is exploring the Resort PTN Selabintana - PTN Section Region III - PTN Division Region II Sukabumi Gunung Gede Pangrango National Park which contains Bambusa sp. The results showed that the species Bambusa sp. found at Resort PTN Selabintana PTN Section Region III PTN Division Region III Sukabumi Gunung Gede Pangrango National Park were as many as 5 species, namely Gigantochloa pseudoarundinacea; Dendrocalamus asper; Dinochloa scandes; Bambusa blumeana; Schizostachyum brachycladum

    Relationship between thyroid stimulating hormone and metabolic syndrome in overweight/obese children

    Get PDF
    Background: Background: Obesity, especially central obesity is related to many endocrine abnormalities, such as thyroid dysfunctions. Elevated levels of thyroid stimulating hormone (TSH) is common in obese children, however, it is not clear if such condition is associated with increased cardiovascular risk factors. The study aimed to determine the association between levels of TSH in overweight and obese children with components of metabolic syndrome (Mets). Methods: The study sample included 197 overweight/obese 6-7 year old children in Tehran, Iran. Anthropometric (weight, waist circumference and height), metabolic (high-density lipoprotein cholesterol, triglycerides and fasting blood glucose) and hormonal (TSH) variables, as well as blood pressure were measured. Mets was defined according to Cook definition. Results: Totally, 20.3% and 79.7% of children were overweight and obese, respectively. Elevated levels of TSH were diagnosed in 10 subjects (5.1%), while Mets was seen in 35.4%. The most frequent component of Mets was abdominal obesity (72.5%). A weak positive correlation between BMI for age, Z scores and TSH level (r =0.11, P value= 0.123) was observed only in girls (r=0.2, P value= 0.034). TSH was not associated with components of Mets. Conclusion: Elevated TSH levels may be found in obese children; however, the association between TSH elevation and cardiovascular disease risk factors, including components of metabolic syndrome needs further investigation

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation

    Population and fertility by age and sex for 195 countries and territories, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    BACKGROUND: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. METHODS: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10-54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10-14 years and 50-54 years was estimated from data on fertility in women aged 15-19 years and 45-49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories

    Hand Function Related to Age and Sex

    No full text
    Objectives: The purpose of this study was for evaluation of relationship between hand function and age, sex by Jebson Taylor Test.This study determined whether age might be a factor when associated with sex. Methods: In this study Jebson Taylor was evaluated on hand in 180 normal males and females (0.50% male, 0.50% female) in each of the following 7 subtest in 3 age groups: (15-25), (35-45), (55-65), in Iran, Tehran (Rey). Duration of time in doing test was considered. Results: There was significant deference on hand function (dominate and no dominate) by the Jebson Taylor in 3 age groups. A2-factor analysis with age and sex as factors yielded signi fican difference (P<0.04) on some subtests between males and females in 3 age group. Discussion: The sex factor showed in age groups 15-25 males to be significantly better in &quot;lifting small objects&quot; on dominate hand and in &quot;lifting large,lightweight objects&quot;, &quot;lifting large, heavy objects&quot; on no dominate hand. Female performed better in age groups 35-45 in &quot;stacking&quot;, &quot;lifting large, lightweight objects&quot; on dominate hand and in &quot;simulated feeding&quot;, &quot;stacking&quot; on no dominate hand. In the 55-65 age interval where females were significantly better in &quot;stacking&quot; on both of the hand

    E4orf1: A protein for enhancing glucose uptake despite impaired proximal insulin signaling.

    No full text
    BackgroundType 2 diabetes is often linked with impaired proximal insulin signaling. Hence, a therapeutic agent that enhances cellular glucose uptake without requiring proximal insulin signaling would be desirable for improving glycemic control. The E4orf1 peptide (E4) derived from human adenovirus 36 (Ad36) promotes cellular glucose uptake in vitro and in vivo, independent of insulin. E4 bypasses a part of insulin signaling to upregulate cellular glucose uptake. We tested the hypothesis that E4 requires the distal but not proximal insulin signaling to enhance cellular glucose disposal.Methods3T3-L1 preadipocytes inducibly expressing E4 or a null vector (NV) were treated with inhibitor of insulin receptor (S961), inhibitor of insulin like growth factor-1receptor (IGF-1R) (Picropodophyllin, PPP), PPP+S961, or phosphatidyl inositol-3 kinase (PI3K) inhibitor (Wortmannin, WM). We used PPP and S961 to block the proximal insulin signaling, or WM to block the distal insulin signaling. Cells were exposed to 0 or 100nM insulin.ResultsAs expected, when the proximal or distal insulin signaling was blocked in NV cells, insulin could not enhance pAKT protein abundance, Glut4 translocation, or glucose uptake. Whereas, E4 cells significantly increased pAKT abundance, Glut4 translocation and glucose uptake independent of the presence of insulin or proximal insulin signaling. Enhanced glucose disposal in E4 cells was completely abrogated when the distal insulin signaling was blocked.ConclusionsE4 bypasses the proximal insulin signaling but uses the distal insulin signaling to activate pAkt and in turn Glut4 translocation to improve cellular glucose uptake. E4 offers a promising template to improve glycemic control when the proximal insulin signaling is impaired

    Population and fertility by age and sex for 195 countries and territories, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017

    No full text
    corecore