21 research outputs found

    MicroRNAs-Based Imaging Techniques in Cancer Diagnosis and Therapy.

    Get PDF
    Cancer is one of the most serious global health concerns in different populations. Several studies indicated that there are many potentially promising cellular and molecular targets for cancer therapy within cancer cells and their microenvironment. Among different cellular and molecular targets involved in cancer pathogenesis, microRNAs (miRNAs) are well known as key targets for cancer therapy. miRNAs are one of main classes of non-coding RNAs. These molecules play important roles in different critical processes of cancer pathogenesis. Hence, this makes miRNAs as a suitable tool for cancer diagnosis and therapy. There are different approaches for monitoring miRNAs in cancer patients. Some conventional approaches including next-generation sequencing, real-time polymerase chain reaction (PCR), northern blotting, and microarrays could be used for assessment of miRNAs expression. Some studies revealed that the utilization of these approaches associated with various limitations. Recently, it has been revealed that molecular imaging techniques are powerful tools for monitoring of different cellular and molecular targets involved in various diseases such as cancer. These techniques help investigators to investigate and monitor miRNAs functions through assessing different targets by fluorescent proteins, bioluminescent enzymes, molecular beacons, as well as various nanoparticles. Therefore, utilization of molecular imaging techniques could assist investigators to better monitor and more effectively treat patients during different phases of malignancy. Here, we give a review on the current state of miRNAs-based imaging techniques in cancer diagnosis and therapy. J. Cell. Biochem. 9999: 1-8, 2017. © 2017 Wiley Periodicals, Inc

    Long non-coding RNAs as epigenetic regulators in cancer

    No full text
    Long noncoding RNAs (lncRNAs) constitute large portions of the mammalian transcriptome which appeared as a fundamental player, regulating various cellular mechanisms. LncRNAs do not encode proteins, have mRNA-like transcripts and frequently processed similar to the mRNAs. Many investigations have determined that lncRNAs interact with DNA, RNA molecules or proteins and play a significant regulatory function in several biological processes, such as genomic imprinting, epigenetic regulation, cell cycle regulation, apoptosis, and differentiation. LncRNAs can modulate gene expression on three levels: chromatin remodeling, transcription, and post-transcriptional processing. The majority of the identified lncRNAs seem to be transcribed by the RNA polymerase II. Recent evidence has illustrated that dysregulation of lncRNAs can lead to many human diseases, in particular, cancer. The aberrant expression of lncRNAs in malignancies contributes to the dysregulation of proliferation and differentiation process. Consequently, lncRNAs can be useful to the diagnosis, treatment, and prognosis, and have been characterized as potential cancer markers as well. In this review, we highlighted the role and molecular mechanisms of lncRNAs and their correlation with some of the cancers. © 2019 Bentham Science Publisher

    Molecular imaging and cancer gene therapy

    No full text
    Gene therapy is known as one of the most advanced approaches for therapeutic prospects ranging from tackling genetic diseases to combating cancer. In this approach, different viral and nonviral vector systems such as retrovirus, lentivirus, plasmid and transposon have been designed and employed. These vector systems are designed to target different therapeutic genes in various tissues and cells such as tumor cells. Therefore, detection of the vectors containing therapeutic genes and monitoring of response to the treatment are the main issues that are commonly faced by researchers. Imaging techniques have been critical in guiding physicians in the more accurate and precise diagnosis and monitoring of cancer patients in different phases of malignancies. Imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are non-invasive and powerful tools for monitoring of the distribution of transgene expression over time and assessing patients who have received therapeutic genes. Here, we discuss most recent advances in cancer gene therapy and molecular approaches as well as imaging techniques that are utilized to detect cancer gene therapeutics and to monitor the patients' response to these therapies worldwide, particularly in Iranian Academic Medical Centers and Hospitals.Cancer Gene Therapy advance online publication, 18 November 2016; doi:10.1038/cgt.2016.62
    corecore