26 research outputs found

    Measurement of the tt¯ production cross-section as a function of jet multiplicity and jet transverse momentum in 7 TeV proton-proton collisions with the ATLAS detector

    Get PDF
    The tt¯ production cross-section dependence on jet multiplicity and jet transverse momentum is reported for proton-proton collisions at a centre-of-mass energy of 7 TeV in the single-lepton channel. The data were collected with the ATLAS detector at the CERN Large Hadron Collider and comprise the full 2011 data sample corresponding to an integrated luminosity of 4.6 fb−1. Differential cross-sections are presented as a function of the jet multiplicity for up to eight jets using jet transverse momentum thresholds of 25, 40, 60, and 80 GeV, and as a function of jet transverse momentum up to the fifth jet. The results are shown after background subtraction and corrections for all known detector effects, within a kinematic range closely matched to the experimental acceptance. Several QCD-based Monte Carlo models are compared with the results. Sensitivity to the parton shower modelling is found at the higher jet multiplicities, at high transverse momentum of the leading jet and in the transverse momentum spectrum of the fifth leading jet. The MC@NLO+HERWIG MC is found to predict too few events at higher jet multiplicities

    Measurement of the low-mass Drell-Yan differential cross section at √s = 7 TeV using the ATLAS detector

    Get PDF
    The differential cross section for the process Z/γ ∗ → ℓℓ (ℓ = e, μ) as a function of dilepton invariant mass is measured in pp collisions at s√ = 7 TeV at the LHC using the ATLAS detector. The measurement is performed in the e and μ channels for invariant masses between 26 GeV and 66 GeV using an integrated luminosity of 1.6 fb−1 collected in 2011 and these measurements are combined. The analysis is extended to invariant masses as low as 12 GeV in the muon channel using 35 pb−1 of data collected in 2010. The cross sections are determined within fiducial acceptance regions and corrections to extrapolate the measurements to the full kinematic range are provided. Next-to-next-to-leading-order QCD predictions provide a significantly better description of the results than next-to-leading-order QCD calculations, unless the latter are matched to a parton shower calculation

    Lavandula angustifolia

    No full text

    Observation of four-top-quark production in the multilepton final state with the ATLAS detector

    No full text
    corecore