66 research outputs found

    Lucky Imaging survey for southern M dwarf binaries

    Full text link
    While M dwarfs are the most abundant stars in the Milky Way, there is still large uncertainty about their basic physical properties (mass, luminosity, radius, etc.) as well as their formation environment. Precise knowledge of multiplicity characteristics and how they change in this transitional mass region, between Sun-like stars on the one side and very low mass stars and brown dwarfs on the other, provide constraints on low mass star and brown dwarf formation. In the largest M dwarf binary survey to date, we search for companions to active, and thus preferentially young, M dwarfs in the solar neighbourhood. We study their binary/multiple properties, such as the multiplicity frequency and distributions of mass ratio and separation, and identify short period visual binaries, for which orbital parameters and hence dynamical mass estimates can be derived in the near future. The observations are carried out in the SDSS i' and z' band using the Lucky Imaging camera AstraLux Sur at the ESO 3.5 m New Technology Telescope. In the first part of the survey, we observed 124 M dwarfs of integrated spectral types M0-M6 and identified 34 new and 17 previously known companions to 44 stars. We derived relative astrometry and component photometry for these systems. More than half of the binaries have separations smaller than 1 arcsec and would have been missed in a simply seeing-limited survey. Correcting our sample for selection effects yields a multiplicity fraction of 32+/-6% for 108 M dwarfs within 52 pc and with angular separations of 0.1-6.0 arcsec, corresponding to projected separation 3-180 AU at median distance 30 pc. Compared to early-type M dwarfs (M>0.3M_Sun), later type (and hence lower mass) M dwarf binaries appear to have closer separations, and more similar masses.Comment: 18 pages, 9 figures. Minor corrections and changes. Revised to match accepted A&A versio

    Orbit Determination of Close Binary Systems using Lucky Imaging

    Full text link
    We present relative positions of visual binaries observed during 2009 with the FastCam "lucky-imaging" camera at the 1.5-m Carlos Sanchez Telescope (TCS) at the Observatorio del Teide. We obtained 424 CCD observations (averaged in 198 mean relative positions) of 157 binaries with angular separations in the range 0.14-15.40", with a median separation of 0.51". For a given system, each CCD image represents the sum of the best 10-25% images from 1000-5000 short-exposure frames. Derived internal errors were 7 mas in r and 1.2^{\circ} (9 mas) in q. When comparing to systems with very well-known orbits, we find that the rms deviation in r residuals is 23 mas, while the rms deviation in q residuals is 0.73 deg/r. We confirmed 18 Hipparcos binaries and we report new companions to BVD 36 A and J 621 B. For binaries with preliminary orbital parameters, the relative radial velocity was estimated as well. We also present four new revised orbits computed for LDS 873, BU 627 A-BC, BU 628 and HO 197 AB. This work is the first results on visual binaries using the FastCam lucky-imaging camera.Comment: 23 pages, 10 figures, 14 tables, accepted August 18th, 2011, to be published in MNRA

    Spitzer 24 micron Survey of Debris Disks in the Pleiades

    Get PDF
    We performed a 24 micron 2 Deg X 1 Deg survey of the Pleiades cluster, using the MIPS instrument on Spitzer. Fifty four members ranging in spectral type from B8 to K6 show 24 micron fluxes consistent with bare photospheres. All Be stars show excesses attributed to free-free emission in their gaseous envelopes. Five early-type stars and four solar-type stars show excesses indicative of debris disks. We find a debris disk fraction of 25 % for B-A members and 10 % for F-K3 ones. These fractions appear intermediate between those for younger clusters and for the older field stars. They indicate a decay with age of the frequency of the dust-production events inside the planetary zone, with similar time scales for solar-mass stars as have been found previously for A-stars.Comment: accepted to Ap

    Extrasolar planets and brown dwarfs around A-F type stars - VII. Theta Cygni radial velocity variations: planets or stellar phenomenon?

    Full text link
    (abridged) In the frame of the search for extrasolar planets and brown dwarfs around early-type main-sequence stars, we present the results obtained on the early F-type star Theta Cygni. Elodie and Sophie at OHP were used to obtain the spectra. Our dedicated radial-velocity measurement method was used to monitor the star's radial velocities over five years. We also use complementary, high angular resolution and high-contrast images taken with PUEO at CFHT. We show that Theta Cygni radial velocities are quasi-periodically variable, with a ~150-day period. These variations are not due to the ~0.35-Msun stellar companion that we detected in imaging at more than 46 AU from the star. The absence of correlation between the bisector velocity span variations and the radial velocity variations for this 7 km/s vsini star, as well as other criteria indicate that the observed radial velocity variations are not due to stellar spots. The observed amplitude of the bisector velocity span variations also seems to rule out stellar pulsations. However, we observe a peak in the bisector velocity span periodogram at the same period as the one found in the radial velocity periodogram, which indicates a probable link between these radial velocity variations and the low amplitude lineshape variations which are of stellar origin. Long-period variations are not expected from this type of star to our knowledge. If a stellar origin (hence of new type) was to be confirmed for these long-period radial velocity variations, this would have several consequences on the search for planets around main-sequence stars, both in terms of observational strategy and data analysis. An alternative explanation for these variable radial velocities is the presence of at least one planet of a few Jupiter masses orbiting at less than 1 AU. (abridged)Comment: 9 pages, accepted in A

    The epsilon Chamaeleontis young stellar group and the characterization of sparse stellar clusters

    Full text link
    We present the outcomes of a Chandra X-ray Observatory snapshot study of five nearby Herbig Ae/Be (HAeBe) stars which are kinematically linked with the Oph-Sco-Cen Association (OSCA). Optical photometric and spectroscopic followup was conducted for the HD 104237 field. The principal result is the discovery of a compact group of pre-main sequence (PMS) stars associated with HD 104237 and its codistant, comoving B9 neighbor epsilon Chamaeleontis AB. We name the group after the most massive member. The group has five confirmed stellar systems ranging from spectral type B9-M5, including a remarkably high degree of multiplicity for HD 104237 itself. The HD 104237 system is at least a quintet with four low mass PMS companions in nonhierarchical orbits within a projected separation of 1500 AU of the HAeBe primary. Two of the low-mass members of the group are actively accreting classical T Tauri stars. The Chandra observations also increase the census of companions for two of the other four HAeBe stars, HD 141569 and HD 150193, and identify several additional new members of the OSCA. We discuss this work in light of several theoretical issues: the origin of X-rays from HAeBe stars; the uneventful dynamical history of the high-multiplicity HD 104237 system; and the origin of the epsilon Cha group and other OSCA outlying groups in the context of turbulent giant molecular clouds. Together with the similar eta Cha cluster, we paint a portrait of sparse stellar clusters dominated by intermediate-mass stars 5-10 Myr after their formation.Comment: Accepted for publication in the Astrophysical Journal. 32 pages and 7 figure

    XHIP-II: Clusters and associations

    Full text link
    Context. In the absence of complete kinematic data it has not previously been possible to furnish accurate lists of member stars for all moving groups. There has been an unresolved dispute concerning the apparent inconsistency of the Hipparcos parallax distance to the Pleiades. Aims. To find improved candidate lists for clusters and associations represented among Hipparcos stars, to establish distances, and to cast light on the Pleiades distance anomaly. Methods. We use a six dimensional fitting procedure to identify candidates, and plot CMDs for 20 of the nearest groups. We calculate the mean parallax distance for all groups. Results. We identify lists of candidates and calculated parallax distances for 42 clusters and 45 associations represented within the Hipparcos catalogue. We find agreement between parallax distance and photometric distances for the most important clusters. For single stars in the Pleiades we find mean parallax distance 125.6 \pm 4.2 pc and photometric distance 132 \pm 3 pc calibrated to nearby groups of similar in age and composition. This gives no reason to doubt either the Hipparcos database or stellar evolutionary theory.Comment: Accepted for publication in Astronomy Letters, 10 pages, 2 fig

    The HARPS search for southern extrasolar planets. XXIII. 8 planetary companions to low-activity solar-type stars

    Full text link
    In this paper, we present our HARPS radial-velocity data for eight low-activity solar-type stars belonging to the HARPS volume-limited sample: HD6718, HD8535, HD28254, HD290327, HD43197, HD44219, HD148156, and HD156411. Keplerian fits to these data reveal the presence of low-mass companions around these targets. With minimum masses ranging from 0.58 to 2.54 MJup, these companions are in the planetary mass domain. The orbital periods of these planets range from slightly less than one to almost seven years. The eight orbits presented in this paper exhibit a wide variety of eccentricities: from 0.08 to above 0.8.Comment: 8 pages, 2 figures, accepted for publication in A&

    The young B-star quintuple system HD 155448

    Full text link
    Until now, HD 155448 has been known as a post-AGB star and listed as a quadruple system. In this paper, we study the system in depth and reveal that the B component itself is a binary and that the five stars HD 155448 A, B1, B2, C, and D likely form a comoving stellar system. From a spectroscopic analysis we derive the spectral types and find that all components are B dwarfs (A: B1V, B1: B6V, B2: B9V, C: B4Ve, D: B8V). Their stellar ages put them close to the ZAMS, and their distance is estimated to be ~2 kpc. Of particular interest is the C component, which shows strong hydrogen and forbidden emission lines at optical wavelengths. All emission lines are spatially extended in the eastern direction and appear to have a similar velocity shift, except for the [OI] line. In the IR images, we see an arc-like shape to the northeast of HD 155448 C. From the optical up to 10 micron, most circumstellar emission is located at distances between ~1.0 arcsec and 3.0 arcsec from HD 155448 C, while in the Q band the arc-like structure appears to be in contact with HD 155448 C. The Spitzer and VLT/VISIR mid-IR spectra show that the circumstellar material closest to the star consists of silicates, while polycyclic aromatic hydrocarbons (PAH) dominate the emission at distances >1 arcsec with bands at 8.6, 11.3, and 12.7 micron. We consider several scenarios to explain the unusual, asymmetric, arc-shaped geometry of the circumstellar matter. The most likely explanation is an outflow colliding with remnant matter from the star formation process.Comment: 19 pages, 12 figures, 9 tables. Accepted for publication in A&

    The Very Slow Wind From the Pulsating Semiregular Red Giant L2 Pup

    Full text link
    We have obtained 11.7 and 17.9 micron images at the Keck I telescope of the circumstellar dust emission from L2 Pup, one of the nearest (D = 61 pc) mass-losing, pulsating, red giants that has a substantial infrared excess. We propose that the wind may be driven by the stellar pulsations with radiation pressure on dust being relatively unimportant, as described in some recent calculations. L2 Pup may serve as the prototype of this phase of stellar evolution where it could lose about 15% of its initial main sequence mass.Comment: ApJ, in pres

    Spectroscopic survey of Kepler stars. I. HERMES/Mercator observations of A- and F-type stars

    Get PDF
    The Kepler space mission provided near-continuous and high-precision photometry of about 207 000 stars, which can be used for asteroseismology. However, for successful seismic modeling it is equally important to have accurate stellar physical parameters. Therefore, supplementary ground-based data are needed. We report the results of the analysis of high-resolution spectroscopic data of A- and F-type stars from the Kepler field, which were obtained with the HERMES spectrograph on the Mercator telescope. We determined spectral types, atmospheric parameters and chemical abundances for a sample of 117 stars. Hydrogen Balmer, Fe i, and Fe ii lines were used to derive effective temperatures, surface gravities, and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. The atmospheric parameters obtained were compared with those from the Kepler Input Catalogue (KIC), confirming that the KIC effective temperatures are underestimated for A stars. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The analysed sample comprises stars with approximately solar chemical abundances, as well as chemically peculiar stars of the Am, Ap, and λ Boo types. The distribution of the projected rotational velocity, vsin i, is typical for A and F stars and ranges from 8 to about 280 km s−1, with a mean of 134 km s−1
    corecore