49 research outputs found

    SERUM ANTIBODIES AGAINST SOME VIRUSES IN SCHIZOPHRENIA PATIENTS

    Get PDF
    No abstrac

    Investigation of melt-grown dilute GaAsN and GaInAsN nanostructures for photovoltaics

    Get PDF
    AbstractThe present work demonstrates the possibility to use liquid phase epitaxy to incorporate nitrogen in epitaxial GaAsN/GaAs and GaInAsN/GaAs heterostructures, including nanoscaled ones. The structures are grown from Ga - and GaIn - melts containing polycrystalline GaN as a nitrogen source. The red shift of the absorption spectra corresponds to nitrogen content in the epitaxial layers near or less than 0.2 at %. Photoluminescence spectra of dilute nitride GaAsN and GaInAsN show emission from localized nitrogen states - N-nanoclusters of more than two N atoms. These studies show that the melt grown dilute GaAsN and GaInAsN nanostructures can be used for solar cells with extended long wavelength edge

    Absolute and Relative Surrogate Measurements of the \u3csup\u3e236\u3c/sup\u3eU(\u3cem\u3en,f\u3c/em\u3e) Cross Section as a Probe of Angular Momentum Effects

    Get PDF
    Using both the absolute and relative surrogate techniques, the 236U(n,f) cross section was deduced over an equivalent neutron energy range of 0 to 20 MeV. A 42 MeV 3He beam from the 88 Inch Cyclotron at Lawrence Berkeley National Laboratory was used to perform a (3He,α) pickup reaction on targets of 235U (Jπ=7/2−) and 238U (Jπ = 0+) and the fission decay probabilities were determined. The 235U(3He,αf) and 238U(3He,αf) were surrogates for 233U(n,f) and 236U(n,f), respectively. The cross sections extracted using the surrogate method were compared to directly measured cross sections. The sensitivity of these cross sections to the Jπ -population distributions was explored

    The recovery of European freshwater biodiversity has come to a halt

    Get PDF
    Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.publishedVersio

    Meta-analysis of multidecadal biodiversity trends in Europe

    Get PDF
    Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising similar to 6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe. The global biodiversity decline might conceal complex local and group-specific trends. Here the authors report a quantitative synthesis of longterm biodiversity trends across Europe, showing how, despite overall increase in biodiversity metric and stability in abundance, trends differ between regions, ecosystem types, and taxa.peerReviewe

    The interplay between total mercury, methylmercury and dissolved organic matter in fluvial systems: A latitudinal study across Europe.

    Get PDF
    Large-scale studies are needed to identify the drivers of total mercury (THg) and monomethyl-mercury (MeHg) concentrations in aquatic ecosystems. Studies attempting to link dissolved organic matter (DOM) to levels of THg or MeHg are few and geographically constrained. Additionally, stream and river systems have been understudied as compared to lakes. Hence, the aim of this study was to examine the influence of DOM concentration and composition, morphological descriptors, land uses and water chemistry on THg and MeHg concentrations and the percentage of THg as MeHg (%MeHg) in 29 streams across Europe spanning from 41°N to 64 °N. THg concentrations (0.06-2.78 ng L-1) were highest in streams characterized by DOM with a high terrestrial soil signature and low nutrient content. MeHg concentrations (7.8-159 pg L-1) varied non-systematically across systems. Relationships between DOM bulk characteristics and THg and MeHg suggest that while soil derived DOM inputs control THg concentrations, autochthonous DOM (aquatically produced) and the availability of electron acceptors for Hg methylating microorganisms (e.g. sulfate) drive %MeHg and potentially MeHg concentration. Overall, these results highlight the large spatial variability in THg and MeHg concentrations at the European scale, and underscore the importance of DOM composition on mercury cycling in fluvial systems

    Carbon dioxide fluxes increase from day to night across European streams

    Get PDF
    Globally, inland waters emit over 2 Pg of carbon per year as carbon dioxide, of which the majority originates from streams and rivers. Despite the global significance of fluvial carbon dioxide emissions, little is known about their diel dynamics. Here we present a large-scale assessment of day- and night-time carbon dioxide fluxes at the water-air interface across 34 European streams. We directly measured fluxes four times between October 2016 and July 2017 using drifting chambers. Median fluxes are 1.4 and 2.1 mmol m−2 h−1 at midday and midnight, respectively, with night fluxes exceeding those during the day by 39%. We attribute diel carbon dioxide flux variability mainly to changes in the water partial pressure of carbon dioxide. However, no consistent drivers could be identified across sites. Our findings highlight widespread day-night changes in fluvial carbon dioxide fluxes and suggest that the time of day greatly influences measured carbon dioxide fluxes across European streams

    Multi-decadal improvements in the ecological quality of European rivers are not consistently reflected in biodiversity metrics

    Get PDF
    Humans impact terrestrial, marine and freshwater ecosystems, yet many broad-scale studies have found no systematic, negative biodiversity changes (for example, decreasing abundance or taxon richness). Here we show that mixed biodiversity responses may arise because community metrics show variable responses to anthropogenic impacts across broad spatial scales. We first quantified temporal trends in anthropogenic impacts for 1,365 riverine invertebrate communities from 23 European countries, based on similarity to least-impacted reference communities. Reference comparisons provide necessary, but often missing, baselines for evaluating whether communities are negatively impacted or have improved (less or more similar, respectively). We then determined whether changing impacts were consistently reflected in metrics of community abundance, taxon richness, evenness and composition. Invertebrate communities improved, that is, became more similar to reference conditions, from 1992 until the 2010s, after which improvements plateaued. Improvements were generally reflected by higher taxon richness, providing evidence that certain community metrics can broadly indicate anthropogenic impacts. However, richness responses were highly variable among sites, and we found no consistent responses in community abundance, evenness or composition. These findings suggest that, without sufficient data and careful metric selection, many common community metrics cannot reliably reflect anthropogenic impacts, helping explain the prevalence of mixed biodiversity trends.We thank J. England for assistance with calculating ecological quality and the biomonitoring indices in the UK. Funding for authors, data collection and processing was provided by the European Union Horizon 2020 project eLTER PLUS (grant number 871128). F.A. was supported by the Swiss National Science Foundation (grant numbers 310030_197410 and 31003A_173074) and the University of Zurich Research Priority Program Global Change and Biodiversity. J.B. and M.A.-C. were funded by the European Commission, under the L‘Instrument Financier pour l’Environnement (LIFE) Nature and Biodiversity program, as part of the project LIFE-DIVAQUA (LIFE18 NAT/ES/000121) and also by the project ‘WATERLANDS’ (PID2019-107085RB-I00) funded by the Ministerio de Ciencia, Innovación y Universidades (MCIN) and Agencia Estatal de Investigación (AEI; MCIN/AEI/10.13039/501100011033/ and by the European Regional Development Fund (ERDF) ‘A way of making Europe’. N.J.B. and V.P. were supported by the Lithuanian Environmental Protection Agency (https://aaa.lrv.lt/) who collected the data and were funded by the Lithuanian Research Council (project number S-PD-22-72). J.H. was supported by the Academy of Finland (grant number 331957). S.C.J. acknowledges funding by the Leibniz Competition project Freshwater Megafauna Futures and the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung or BMBF; 033W034A). A.L. acknowledges funding by the Spanish Ministry of Science and Innovation (PID2020-115830GB-100). P.P., M.P. and M.S. were supported by the Czech Science Foundation (GA23-05268S and P505-20-17305S) and thank the Czech Hydrometeorological Institute and the state enterprises Povodí for the data used to calculate ecological quality metrics from the Czech surface water monitoring program. H.T. was supported by the Estonian Research Council (number PRG1266) and by the Estonian national program ‘Humanitarian and natural science collections’. M.J.F. acknowledges the support of Fundação para a Ciência e Tecnologia, Portugal, through the projects UIDB/04292/2020 and UIDP/04292/2020 granted to the Marine and Environmental Sciences Centre, LA/P/0069/2020 granted to the Associate Laboratory Aquatic Research Network (ARNET), and a Call Estímulo ao Emprego Científico (CEEC) contract.Peer reviewe
    corecore