16 research outputs found

    Moringa oleifera: Resource management and multiuse life tree

    Get PDF
    Moringa oleifera Lamarck (Moringaceae family) is a plant native from the Western and sub-Himalayan parts of Northwest India, Pakistan and Afghanistan. This species is widely cultivated across Africa, South-East Asia, Arabia, South America and Caribbean Islands. M. oleifera culture is also being distributed in the Semi-Arid Northeast of Brazil. It is a multiuse life tree with great environmental economic importance in industrial and medical areas. This review reports different purposes of M. oleifera including sustaining environmental resources, soil protection and shelter for animals. This plant requires not much care and distinct parts have bioactive compounds. Moringa tissues used in human and animal diets, also withdraw pollutants from water. The seeds with coagulant properties used in water treatment for human consumption, remove waste products like surfactants, heavy metals and pesticides. The oil extracted from seeds is used in cosmetic production and as biodiesel. M. oleifera tissues also contain proteins with different biological activities, including lectins, chitin-binding proteins, trypsin inhibitors, and proteases. The lectins are reported to act as insecticidal agents against Aedes aegypti (vector of dengue, chikungunya and yellow fevers) and Anagasta kuehniella (pest of stored products) and also showed water coagulant, antibacterial and blood anticoagulant activities. The presence of trypsin inhibitors has been reported in M. oleifera leaves and flowers. The inhibitor from flowers is toxic to larvae of A. aegypti. The flowers also contain caseinolytic proteases that are able to promote clotting of milk. In this sense, M. oleifera is a promising tree from a biotechnological point of view, since it has shown a great variety of uses and it is a source of several compounds with a broad range of biological activities.Conselho Nacional de Desenvolvimento Científico e Tecnológico for fellowship (LCBBC) and to the Foundation for Science and Technology, POPH/FSE (AFSS

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    A trypsin inhibitor from <i>Moringa oleifera</i> flower extract is cytotoxic to <i>Trypanosoma cruzi</i> with high selectivity over mammalian cells

    No full text
    <p>In this study, <i>Moringa oleifera</i> flower extract and a trypsin inhibitor (MoFTI) isolated from it were evaluated for anti-protozoal activity against <i>Trypanosoma cruzi</i> and cytotoxicity to mammalian cells. The presence of flavonoids was remarkable in the HPLC fingerprints of the extract at 254 and 360 nm. Amino acid sequences of peptides derived from in-gel digestion of MoFTI were determined. Both the extract and MoFTI caused lysis of <i>T. cruzi</i> trypomastigotes with LC<sub>50/24 h</sub> of 54.18 ± 6.62 and 41.20 ± 4.28 μg/mL, respectively. High selectivity indices (7.9 to >12) for <i>T. cruzi</i> cells over murine peritoneal macrophages and Vero cells were found for the extract and MoFTI. The results show that MoFTI is a trypanocidal principle of the flower extract.</p
    corecore