34 research outputs found

    Marrow-derived stromal cell delivery on fibrin microbeads can correct radiation-induced wound-healing deficits.

    Get PDF
    Skin that is exposed to radiation has an impaired ability to heal wounds. This is especially true for whole-body irradiation, where even moderate nonlethal doses can result in wound-healing deficits. Our previous attempts to administer dermal cells locally to wounds to correct radiation-induced deficits were hampered by poor cell retention. Here we improve the outcome by using biodegradable fibrin microbeads (FMBs) to isolate a population of mesenchymal marrow-derived stromal cells (MSCs) from murine bone marrow by their specific binding to the fibrin matrix, culture them to high density in vitro, and deliver them as MSCs on FMBs at the wound site. MSCs are retained locally, proliferate in site, and assist wounds in gaining tensile strength in whole-body irradiated mice with or without additional skin-only exposure. MSC-FMBs were effective in two different mouse strains but were ineffective across a major histocompatability barrier. Remarkably, irradiated mice whose wounds were treated with MSC-FMBs showed enhanced hair regrowth, suggesting indirect effect on the correction of radiation-induced follicular damage. Further studies showed that additional wound-healing benefit could be gained by administration of granulocyte colony-stimulating factor and AMD3100. Collagen strips coated with haptides and MSCs were also highly effective in correcting radiation-induced wound-healing deficits

    Grey matter volume in adolescent anxiety: an impact of the Brain-derived neurotropic factor Val66Met polymorphism?

    Get PDF
    Objective: Minimal research links anxiety disorders in adolescents to regional gray matter volume (GMV) abnormalities and their modulation by genetic factors. Prior research suggests that a brain-derived neurotrophic factor (BNDF) Val(66)Met polymorphism may modulate such brain morphometry profiles. Method: Using voxel-based morphometry and magnetic resonance imaging, associations of BDNF and clinical anxiety with regional GMVs of anterior cingulate cortex, insula, amygdala, and hippocampus were examined in 39 affected (17 Met allele carriers, 22 Val/Val homozygotes) and 63 nonaffected adolescents (33 Met allele carriers, 41 Val/Val homozygotes). Results: Amygdala and anterior hippocampal GMVs were significantly smaller in patients than in healthy comparison adolescents, with a reverse pattern for the insula. Post-hoc regression analyses indicated a specific contribution of social phobia to the GMV reductions in the amygdala and hippocampus. In addition, insula and dorsal anterior cingulate cortex (ACC) GMVs were modulated by BDNF genotype. In both regions, and GMVs were larger in the Val/Val homozygote patients than in individuals carrying the Met allele. Conclusions: These results implicate reduced GMV in the amygdala and hippocampus in pediatric anxiety, particularly social phobia. In addition, the data suggest that genetic factors may modulate differences in the insula and dorsal ACC. J. Am. Acad. Child Adolesc. Psychiatry; 2013;52(2):184-195

    Serotonin Transporter Genotype (5-HTTLPR) Predicts Utilitarian Moral Judgments

    Get PDF
    The psychological and neurobiological processes underlying moral judgment have been the focus of extensive recent research. Here we show that serotonin transporter (5-HTTLPR) genotype predicts responses to moral dilemmas featuring foreseen harm to an innocent.Participants in this study judged the acceptability of actions that would unintentionally or intentionally harm an innocent victim in order to save others' lives. An analysis of variance revealed a genotype × scenario interaction, F(2, 63) = 4.52, p = .02. Results showed that, relative to long allele homozygotes (LL), carriers of the short (S) allele showed particular reluctance to endorse utilitarian actions resulting in foreseen harm to an innocent individual. LL genotype participants rated perpetrating unintentional harm as more acceptable (M = 4.98, SEM = 0.20) than did SL genotype participants (M = 4.65, SEM = 0.20) or SS genotype participants (M = 4.29, SEM = 0.30). No group differences in moral judgments were observed in response to scenarios featuring intentional harm.The results indicate that inherited variants in a genetic polymorphism that influences serotonin neurotransmission influence utilitarian moral judgments as well. This finding is interpreted in light of evidence that the S allele is associated with elevated emotional responsiveness

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Fibrin Microbeads Loaded with Mesenchymal Cells Support Their Long-Term Survival While Sealed at Room Temperature

    No full text
    Efficient transfer of progenitor cells without affecting their survival is a key factor in any practical cell therapy. Fibrin microbeads (FMB) were developed as hard biodegradable cell carriers. The FMB could efficiently isolate mesenchymal stem cells (MSCs) from different sources and support the expansion of matrix-dependent cell types in a three-dimensional culture in slow rotation. The cells on FMB could also undergo induced differentiation for their eventual implantation to enhance tissue regeneration. FMB loaded with isolated human MSC (hMSC) were sealed in tubes topped up with medium. Almost full cell survival was recorded when the sealed cells were maintained in room temperature for up to 10 days, followed by a recovery period of 24 hrs at optimal conditions. Assay of cells recovery after such long room temperature storage showed ∼80%–100% survival of the cells on FMB, with only a marginal survival of cells that were kept in suspension without FMB in the same conditions. The hMSC that survived storage at room temperature preserved their profile of mesenchymal cell surface markers, their rate of proliferation, and their differentiation potential. The cell protective effect was not dependent on the presence of serum in the storage medium. It was clearly shown that over-expression of hypoxia induced factor-1α in hMSC with time, which may have protected the sealed cells on FMB at room temperature storage, was not necessarily related to extreme hypoxic stress. Foreskin normal fibroblasts on FMB sealed at room temperature were similarly protected, but with no elevation of their hypoxia-induced factor-1α expression. The results also show that FMB, unlike other commercially available cell carriers, could be used for delivery and shipping of progenitor cells at room temperature for extended time intervals. This could be highly useful for cell transfer for therapeutic application and for simplified cell transfer between different research centers

    Marrow-Derived Stromal Cell Delivery on Fibrin Microbeads Can Correct Radiation-Induced Wound-Healing Deficits

    No full text
    Skin that is exposed to radiation has an impaired ability to heal wounds. This is especially true for whole body irradiation, where even moderate non-lethal doses can result in wound healing deficits. Our previous attempts to administer dermal cells locally to wounds to correct radiation-induced deficits were hampered by poor cell retention. Here we improve the outcome by using biodegradable fibrin microbeads (FMB) to isolate a population of mesenchymal marrow-derived stromal cells (MSC) from murine bone marrow by their specific binding to the fibrin matrix, culture them to high density in vitro and deliver them as MSC on FMB at the wound site. MSC are retained and proliferate locally and assist wounds gain tensile strength in whole body irradiated mice with or without additional skin only exposure. MSC-FMB were effective in 2 different mouse strains but were ineffective across a major histocompatability barrier. Remarkably, irradiated mice whose wounds were treated with MSC-FMB showed enhanced hair regrowth suggesting indirect effect on the correction of radiation-induced follicular damage. Further studies showed that additional wound healing benefit could be gained by administration of G-CSF and AMD3100. Collagen strips coated with haptides and MSCs were also highly effective in correcting radiation-induced wound healing deficits
    corecore