25 research outputs found

    Insulin Receptor and the Kidney: Nephrocalcinosis in Patients with Recessive INSR Mutations.

    Get PDF
    BACKGROUND/AIMS: Donohue and Rabson-Mendenhall syndrome are rare autosomal recessive disorders caused by mutations in the insulin receptor gene, INSR. Phenotypic features include extreme insulin resistance, linear growth retardation, paucity of fat and muscle, and soft tissue overgrowth. The insulin receptor is also expressed in the kidney, where animal data suggest it plays a role in glomerular function and blood pressure (BP) regulation, yet such a role in the human kidney is untested. Patients with biallelic INSR mutations provide a rare opportunity to ascertain its role in man. METHODS: Retrospective review of patients with INSR mutations. Data for BP, renal imaging, plasma creatinine and electrolyte levels, as well as urine protein, albumin and calcium excretion were sought from the treating clinicians. RESULTS: From 33 patients with INSR mutations, data were available for 17 patients. Plasma creatinine was low (mean ± SD: 25 ± 9 μmol/l) and mean plasma electrolyte concentrations were within the normal range (n = 13). Systolic BP ranged between the 18th and 91st percentile for age, sex, height and weight (n = 9; mean ± SD: 49 ± 24). Twenty-four-hour urinary calcium data were available from 10 patients and revealed hypercalciuria in all (mean ± SD: 0.32 ± 0.17 mmol/kg/day; normal <0.1). Nephrocalcinosis was present in all patients (n = 17). Urinary albumin excretion (n = 7) ranged from 4.3-122.5 μg/min (mean ± SD: 32.4 ± 41.0 μg/min; normal <20). CONCLUSIONS: INSR dysfunction is associated with hypercalciuria and nephrocalcinosis. No other consistent abnormality of renal function was noted. Normotension and stable glomerular function with only moderate proteinuria is in contrast to genetically modified mice who have elevated BP and progressive diabetic nephropathy

    High incidence of Noonan syndrome features including short stature and pulmonic stenosis in patients carrying NF1 missense mutations affecting p.Arg1809: genotype-phenotype correlation

    Get PDF
    Neurofibromatosis type 1 (NF1) is one of the most frequent genetic disorders, affecting 1:3,000 worldwide. Identification of genotype-phenotype correlations is challenging because of the wide range clinical variability, the progressive nature of the disorder, and extreme diversity of the mutational spectrum. We report 136 individuals with a distinct phenotype carrying one of five different NF1 missense mutations affecting p.Arg1809. Patients presented with multiple cafe-au-lait macules (CALM) with or without freckling and Lisch nodules, but no externally visible plexiform neurofibromas or clear cutaneous neurofibromas were found. About 25% of the individuals had Noonan-like features. Pulmonic stenosis and short stature were significantly more prevalent compared with classic cohorts (P<0.0001). Developmental delays and/or learning disabilities were reported in over 50% of patients. Melanocytes cultured from a CALM in a segmental NF1-patient showed two different somatic NF1 mutations, p.Arg1809Cys and a multi-exon deletion, providing genetic evidence that p.Arg1809Cys is a loss-of-function mutation in the melanocytes and causes a pigmentary phenotype. Constitutional missense mutations at p.Arg1809 affect 1.23% of unrelated NF1 probands in the UAB cohort, therefore this specific NF1 genotype-phenotype correlation will affect counseling and management of a significant number of patients

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis

    No full text
    Metabolic dyslipidemia is characterized by high circulating triglyceride (TG) and low HDL cholesterol levels and is frequently accompanied by hepatic steatosis. Increased hepatic lipogenesis contributes to both of these problems. Because insulin fails to suppress gluconeogenesis but continues to stimulate lipogenesis in both obese and lipodystrophic insulin-resistant mice, it has been proposed that a selective postreceptor defect in hepatic insulin action is central to the pathogenesis of fatty liver and hypertriglyceridemia in these mice. Here we show that humans with generalized insulin resistance caused by either mutations in the insulin receptor gene or inhibitory antibodies specific for the insulin receptor uniformly exhibited low serum TG and normal HDL cholesterol levels. This was due at least in part to surprisingly low rates of de novo lipogenesis and was associated with low liver fat content and the production of TG-depleted VLDL cholesterol particles. In contrast, humans with a selective postreceptor defect in AKT2 manifest increased lipogenesis, elevated liver fat content, TG-enriched VLDL, hypertriglyceridemia, and low HDL cholesterol levels. People with lipodystrophy, a disorder characterized by particularly severe insulin resistance and dyslipidemia, demonstrated similar abnormalities. Collectively these data from humans with molecularly characterized forms of insulin resistance suggest that partial postreceptor hepatic insulin resistance is a key element in the development of metabolic dyslipidemia and hepatic steatosis

    Complement Abnormalities in Acquired Lipodystrophy Revisited

    No full text
    Context: Lipodystrophy is a heterogeneous condition characterized by an inherited or acquired deficiency in the number of adipocytes required for the storage of energy as triglycerides. Acquired lipodystrophy is frequently associated with other autoimmune disorders. One well-studied form is characterized by the selective loss of upper body fat in association with activation of the alternative complement pathway by C3 nephritic factor, low complement factor C3, and mesangiocapillary glomerulonephritis. Objective: We now describe an immunologically distinct form of acquired generalized lipodystrophy, with evidence of activation of the classical complement pathway (low C4) and autoimmune hepatitis. Patients and Research Design: Three unrelated patients with acquired lipodystrophy and low complement C4 levels are described. In vitro analysis of the complement pathway was undertaken to determine the reason for the low C4 complement levels. Biopsies were obtained from liver, bone marrow, and adipose tissue for histological analysis. Results: All three patients manifested near-total lipodystrophy, chronic hepatitis with autoimmune features, and low C4 complement levels. Additional autoimmune diseases, including severe hemolytic anemia, autoimmune thyroid disease, and polyneuropathy, were variably present. Detailed studies of complement pathways suggested constitutive classical pathway activation. Conclusions: Although the previously described syndrome, which typically results in a cephalad pattern of partial lipodystrophy, results from activation of the alternative complement pathway, this form, in which lipodystrophy is generalized, is associated with activation of the classical pathway. Future therapeutic approaches to these disorders may benefit from being tailored to their distinct immunopathogenesis
    corecore