11 research outputs found
Lignocellulosic Nanocrystals from Sawmill Waste as Biotemplates for Free-Surfactant Synthesis of Photocatalytically Active Porous Silica
This work presents a new approach for more effective valorization of sawmill wastes (Beech and Cedar sawdusts), which were used as new sources for the extraction of lignin-containing and lignin-free cellulose II nanocrystals (L-CNCs and CNCs). It was shown that the properties of the extracted nanocrystals depend on the nature of the used sawdust (softwood or hardwood sawdusts). L-CNCs and CNCs derived from Beech fibers were long and thin and also had a higher crystallinity, compared with those obtained from Cedar fibers. Thanks to their interesting characteristics and their high crystallinity, these nanocrystals have been used without changing their surfaces as template cores for nanostructured hollow silica-free-surfactant synthesis for photocatalysis to degrade methylene blue (MB) dye. The synthesis was performed with a simple and efficient sol–gel method using tetraethyl orthosilicate as the silica precursor followed by calcination at 650 °C. The obtained materials were denoted as B/L-CNC/nanoSiO2, B/CNC/nanoSiO2, C/L-CNC/nanoSiO2, and C/CNC/nanoSiO2, when the used L-CNC and CNC cores are from Beech and Cedar, respectively. By comprehensive analysis, it was demonstrated that the nanostructured silica were quite uniform and had a similar morphology as the templates. Also, the pore sizes were closely related to the dimensions of L-CNC and CNC templates, with high specific surface areas. The photocatalytic degradation of MB dye was about 94, 98, 74, and 81% for B/L-CNC/nanoSiO2, B/CNC/nanoSiO2, C/L-CNC/nanoSiO2, and C/CNC/nanoSiO2, respectively. This study provides a simple route to extract L-CNCs and CNCs as organic templates to prepare nanostructured silica. The different silica structures showed excellent photodegradation of MB.</p
Application of built-in adjuvants for epitope-based vaccines
Several studies have shown that epitope vaccines exhibit substantial advantages over conventional vaccines. However, epitope vaccines are associated with limited immunity, which can be overcome by conjugating antigenic epitopes with built-in adjuvants (e.g., some carrier proteins or new biomaterials) with special properties, including immunologic specificity, good biosecurity and biocompatibility, and the ability to vastly improve the immune response of epitope vaccines. When designing epitope vaccines, the following types of built-in adjuvants are typically considered: (1) pattern recognition receptor ligands (i.e., toll-like receptors); (2) virus-like particle carrier platforms; (3) bacterial toxin proteins; and (4) novel potential delivery systems (e.g., self-assembled peptide nanoparticles, lipid core peptides, and polymeric or inorganic nanoparticles). This review primarily discusses the current and prospective applications of these built-in adjuvants (i.e., biological carriers) to provide some references for the future design of epitope-based vaccines
Batch adsorption of Brilliant Green dye on raw Beech sawdust: Equilibrium isotherms and kinetic studies
This paper deals with the adsorption study of a synthetic dye namely Brilliant Green (BG) used frequently in the textile industries, using a natural and a low-cost adsorbent, which is locally available. The adsorbent used in this work is the Beech sawdust, collected from an industrial unit of wood in Fez city (Morocco) and which is characterized before by various techniques. The study of the adsorption potential of this dye on Beech sawdust and the monitoring of the influence of several parameters on this adsorption were evaluated. The analysis of the results obtained during this study showed that the adsorption rate of Brilliant Green dye reached a percentage of about 82% with a maximum concentration of 80 ppm. The optimum mass of Beech sawdust used is 1.25 g in a volume of 100 ml. The mixture was agitated for90 min as a contact time at ambient temperature. The adsorption isotherms modeling obtained is consistent with the Langmuir model and the kinetic data follows the pseudo-second order model. This study revealed that the Beech sawdust is very effective in removing Brilliant Green as a cationic dye, which making these sawdust an effective alternative for the removal of cationic dyes from polluted water.
Successive Solvent Extraction, Characterization and Antioxidant Activities of Cardoon Waste (Leaves and Stems) Extracts: Comparative Study
The main interest in the valorization of vegetable wastes is due to the peculiarity of their chemical composition in substances that present important properties. Among these substances, antioxidants could replace those industrially manufactured. In the present study, three solvents of different polarities (hexane, ethanol, and water) were applied for the extraction of phenolic compounds from Cynara cardunculus L. waste using two extraction methods: Soxhlet Extraction (SE) and Ultrasonic-Assisted Extraction (UAE). The obtained extracts were then characterized by Fourier-Transform Infrared (FTIR) spectroscopy and spectrophotometric determination of Total Phenolics (TPC), Total Flavonoids (TFC), and Condensed Tannins (CT). Total Antioxidant Capacity (TAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity of ethanol and water extracts of leaves and stems were also evaluated. High extraction yields were obtained by UAE. Water extracts had high yield regardless of the technique used for leaves and stems, and these extracts showed high TAC of 534.72 ± 3.83 mg AAE/g FM for leaves and 215.70 ± 8.87 mg AAE/g FM (mg of ascorbic acid equivalent per g of FM) for stems, and IC50 of 2077.491 μg/mL for leaves and 1248.185 μg/mL for stems. We explain the latter by the high total phenolic contents (TPCs), which reach 579.375 ± 3.662 mg GAE/g FM (mg of gallic acid equivalents per g of fresh matter) for leaves and 264.906 ± 3.500 mg GAE/g FM for stems. These results confirmed that the leaves and stems of the studied cardoon waste were, indeed, interesting sources of natural antioxidants
Physicochemical Characterization of Cardoon “<i>Cynara cardunculus</i>” Wastes (Leaves and Stems): A Comparative Study
The disposal of vegetable wastes in nature is harmful for marine habitats and biota. These types of waste are frequently used as fuel, generating polluting products, with undesired side effects on the environment. Therefore, it is essential to find better alternatives for the capitalisation of these waste products. Their diversified chemical composition can become a potential resource of high added value raw materials. The knowledge of the physicochemical properties of these wastes is therefore essential. The present work aimed for characterising the physicochemical properties of a plant residue belonging to the Asteraceae Family, collected from a vegetable market in Fez city, Morocco. The vegetal tissues were analysed by Scanning Electron Microscopy coupled with EDX, X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Inductively Coupled Plasma Atomic Emission Spectroscopy, and by Thermogravimetric/Differential thermal analyses. Other additional parameters were also measured, such as moisture, volatile matter, ash, and fixed carbon contents. Acidic and basic surface functions were evaluated by Boehm’s method, and pH points at zero charge were equally calculated. The results revealed a strong congruence between the morphological and structural properties of this plant. These vegetal wastes comprise a homogeneous fibrous and porous aspect both in surface and in profile, with a crystalline structure characteristic of cellulose I. A mass loss of 86.49% for leaves and 87.91% for stems in the temperature range of 100 °C to 700 °C, and pHpzc of 8.39 for leaves and 7.35 for stems were found. This study clarifies the similarities and differences between the chemical composition and morphological structure of these vegetal wastes, paving the way for future value-added applications in appropriate fields